Длина волны и скорость ее распространения. Конвертер частоты и длины волны Найти длину волны и

Волна представляет собой возмущение материи, которое, распространяясь в пространстве, переносит энергию без переноса самой материи. Каждая волна имеет определенные характеристики. Одной из важных характеристик процессов возмущения является длина волны, формула для расчета которой приводится в статье.

Виды волн

Все волны классифицируют по их физической природе, по типу движения частиц материи, по их периодичности и по способу распространения в пространстве.

Согласно типу движения частиц материи при распространении в ней волны выделяют следующие виды:

  • Поперечные волны - это такой тип возмущения, при котором частицы материи колеблются в направлении, которое перпендикулярно направлению распространения волны. Примером поперечной волны является свет.
  • Продольные волны - это волны, в которых частицы материи колеблются в направлении распространения волны. Звук является хорошим примером продольной волны.

Согласно физической природе выделяют следующие типы волн:

  • Механические. Этому типу волн необходимо вещество, чтобы они возникли, то есть твердая, жидкая или газообразная среда. Примером механических волн являются волны на море.
  • Электромагнитные. Этот тип волн не нуждается в веществе для своего распространения, а может распространяться в вакууме. Ярким примером электромагнитных волн являются радиоволны.
  • Гравитационные. Эти волны приводят к возмущению пространства-времени. Порождают такие волны крупные космические объекты, например, двойная звезда, которая вращается вокруг общего центра тяжести.

В соответствии с размерностью волны они могут быть:

  • Одномерные, то есть такие, которые распространяются в одном измерении, например, вибрация веревки.
  • Двумерные или поверхностные. Эти волны распространяются в двух измерениях, например, волны на поверхности воды.
  • Трехмерные или сферические. Эти волны распространяются в трех измерениях, например, свет или звук.

В соответствии с периодичностью волны можно сказать, что существуют:

  • Периодические возмущения, которые отличаются строго повторяющимися характеристиками через определенный промежуток времени, например, звуковые волны.
  • Не периодические, такие волны не повторяют своих характеристик, через определенные интервалы времени, например, волны электрокардиограммы.

Физические характеристики волны

Волна характеризуется 6 параметрами, из которых только 3 являются независимыми, остальные выводятся из этих трех по соответствующим формулам:

  1. Длина волны L - расстояние между двумя максимумами волны.
  2. Высота H - вертикальное расстояние между максимумом и минимумом волны.
  3. Амплитуда - величина, равная половине высоты.
  4. Период T - время, за которое два максимума или два минимума волны пройдут через одну и ту же точку пространства.
  5. Частота - величина обратная периоду волны, то есть она описывает количество максимумов или минимумов, которые проходят через конкретную точку пространства за единицу времени.
  6. Скорость - величина, характеризующая распространение волны. Она вычисляется по формуле: длина волны делить на период, то есть v = L/T.

Независимыми характеристиками являются, например, длина волны, период и ее амплитуда.

Длина волны

Эта характеристика содержит информацию о волне, которая во многом описывает ее свойства. В физике длина волны определяется как расстояние между двумя ее максимумами (минимумами), или в более общем случае как расстояние между двумя точками, которые колеблются в одной фазе. Под фазой волны понимается мгновенное состояние каждой точки волны. Понятие "фаза" имеет смысл только для периодических Длина волны обычно обозначается греческой буквой λ (лямбда).

В физике формула для длины волны зависит от начальной информации, которая имеется о данном колебании. Например, в случае электромагнитных колебаний можно знать частоту и скорость распространения волны, а затем для вычисления длины волны применить обычную формулу расчета, либо можно знать энергию отдельного фотона, тогда уже следует применять специфическую формулу именно для энергии.

Синусоидальные волны

Согласно теореме Фурье, любая периодическая волна может быть представлена суммой синусоидальных волн различной длины. Эта теорема позволяет изучать каждую периодическую волну благодаря изучению ее синусоидальных компонентов.

Для синусоидальной волны с частотой f, периодом T и скоростью распространения v формула длины волны имеет вид: λ = v/f = v*T.

Скорость распространения волны зависит от типа среды, в которой происходит волновой процесс, а также от частоты колебаний. Скорость распространения электромагнитной волны в вакууме является величиной постоянной и приблизительно равна 3*10 8 м/с.

Звуковые волны

Этот тип механических волн порождается за счет локального изменения давления в веществе, возникающего при колебательных процессах. Например, в воздушной среде речь идет о разряженных и сжатых областях, которые распространяются в виде сферической волны от порождающего их источника. Этот тип волн является периодическим, поэтому формула для длины звуковой волны является такой же, как и для синусоидальной.

Отметим, что в жидкостях и газах могут распространяться только продольные волны, поскольку в этих средах не возникает упругой силы при сдвиге слоев вещества относительно друг друга, в то время как в твердом теле помимо продольных, могут существовать и поперечные волны.

Скорость звуковых волн в различных средах

Скорость распространения таких волн определяется характеристиками колебательной среды: ее давлением, температурой и плотностью вещества. Поскольку элементарные частицы, составляющие твердые тела, находятся ближе друг к другу, чем эти частицы в жидкостях, то такая структура твердого вещества позволяет передавать колебательную энергию через него быстрее, чем через жидкость, поэтому скорость распространения волны в них больше. По этой же причине скорость звука в жидкостях выше, чем в газах.

Данные о скорости звука в некоторых средах:

В случае воздуха отметим, что Ньютоном была выведена формула для скорости звука в этой среде в зависимости от температуры, которая впоследствии была модифицирована Лапласом. Эта формула имеет вид: v = 331+0,6*t ºC.

Таким образом, формула для длины звуковой волны с частотой f в воздухе при 25 ºC приобретет вид: λ = v/f = 346/f.

Электромагнитные волны

В отличие от механических волн, природа которых заключается в возмущении вещества, в котором они распространяются, электромагнитные волны не требуют материи для своего распространения. Они возникают по причине двух эффектов: во-первых, переменное магнитное поле создает электрическое поле, во-вторых, переменное электрическое поле создает магнитное поле. Осциллирующие магнитное и электрическое поля направлены перпендикулярно друг к другу и перпендикулярно к направлению движения волны, поэтому по своей природе электромагнитные волны являются поперечными.

В вакууме эти волны движутся со скоростью 3*10 8 м/с и могут иметь различные значения частоты, поэтому длина электромагнитной волны выражается в виде: λ = v/f = 3*10 8 /f, где f - частота колебаний.

Спектр электромагнитного излучения

Спектр электромагнитного излучения представляет собой совокупность всех длин электромагнитных волн. Различают следующие части спектра:

  • Радиоэлектрическое излучение. Длина волны спектра для этого излучения составляет от нескольких сантиметров до тысяч километров. Используются эти волны в телевидении и различных типах связи.
  • Инфракрасное излучение. Это тепловое излучение имеет длины волн порядка нескольких микрометров.
  • Видимый свет. Это та часть спектра, которую человеческий глаз способен различать. Его длина волн находится в пределах от 400 нм (синий) до 700 нм (красный).
  • Ультрафиолетовый спектр. Его длины волн лежат в пределах 15-400 нм.
  • Рентгеновское излучение. Используется главным образом в медицине. Их длина волны лежит в области 10 нм - 10 пм. Источником их излучения являются колебания электронов в атомах.
  • Гамма-лучи. Это самая высокочастотная часть спектра, с длиной волны меньше 10 пк. Гамма-лучи обладают огромной проникающей способностью через любое вещество. Порождаются они в результате процессов, происходящих в ядре атома.

Расчет длины волны через энергию фотона

Очень часто в физике возникают задачи, которые ставят вопрос, чему равна длина волны для фотона, имеющего энергию E. Для решения такого рода задач следует использовать следующую формулу: E=h*c/λ, где c - скорость движения фотона, h - постоянная Планка, которая равна 6,626*10 -34 Дж*с.

Из приведенной формулы получим длину волны фотона: λ = h*c/E. Например, пусть энергия фотона E = 2,88*10 -19 Дж, а фотон движется в вакууме, то есть c = 3*10 8 м/с. Тогда получаем: λ = h*c/E = 6,626*10 -34 *3*10 8 /2,88*10 -19 = 6,90*10 -7 м = 690 нм. Таким образом, этот фотон имеет длину волны, которая лежит вблизи верхней границы видимого спектра, и будет восприниматься человеком, как красный луч света.

Диапазоны плавно пере-ходят друг в друга, чёткой границы между ними нет. Поэтому граничные значения длин волн порой весьма условны.

1. Радиоволны (Л > 1 мм). Источниками радиоволн служат колебания зарядов в проводах, антеннах, колебательных контурах. Радиоволны излучаются также во время гроз.

Сверхдлинные волны (Л > 10 км). Хорошо распространяются в воде, поэтому исполь-зуются для связи с подводными лодками.

Длинные волны (1 км < Л < 10 км). Используются в радиосвязи, радиовещании, радионавигации.

Средние волны (100 м < Л < 1 км). Радиовещание. Радиосвязь на расстоянии не более 1500 км.

Короткие волны (10 м < Л < 100 м). Радиовещание. Хорошо отражаются от ионо-сферы; в результате многократных отражений от ионосферы и от поверхности Земли могут распространяться вокруг земного шара. Поэтому на коротких волнах можно ловить радиостанции других стран.

Метровые волны (1м < Л < 10 м). Местное радивещание в УКВ-диапазоне. Напри-мер, длина волны радиостанции «Эхо Москвы» составляет 4 м. Используются также в телевидении (федеральные каналы); так, длина волны телеканала «Россия 1» равна примерно 5 м.

Дециметровые волны (10 см < Л < 1м). Телевидение (дециметровые каналы). На-пример, длина волны телеканала «Animal Planet» приблизительно равна 42 см. Это также диапазон мобильной связи; так, стандарт GSM 1800 использует радиовол-ны с частотой примерно 1800 МГц, т. е. с длиной волны около 17 см. Есть ещё одно хорошо известное вам применение дециметровых волн — это микровол-новые печи. Стандартная частота микроволновой печи равна 2450 МГц (это частота, на которой происходит резонансное поглощение электромагнитного излучения моле-кулами воды). Она отвечает длине волны примерно 12 см. Наконец, в технологиях беспроводной связи Wi-Fi и Bluetooth используется такая же длина волны — 12 см (частота 2400 МГц).

Сантиметровые волны (1 см < Л < 10 см). Это — область радиолокации и спутни-ковых телеканалов. Например, канал НТВ+ ведёт своё телевещание на длинах волн около 2 см.

Инфракрасное излучение (780 нм < Л < 1 мм). Испускается молекулами и атомами нагретых тел. Инфракрасное излучение называется ещё тепловым — когда оно попадает на наше тело, мы чувствуем тепло. Человеческим глазом инфракрасное излучение не воспринимается Мощнейшим источником инфракрасного излучения служит Солнце. Лампы накаливания излучают наибольшее количество энергии (до 80%) в как раз в инфракрасной области спектра. Инфракрасное излучение имеет широкую область применения: инфракрасные обогревате-ли, пульты дистанционного управления, приборы ночного видения, сушка лакокрасочных покрытий и многое другое. При повышении температуры тела длина волны инфракрасного излучения уменьшается, смещаясь в сторону видимого света. Засунув гвоздь в пламя горелки, мы можем наблю-дать это воочию: в какой-то момент гвоздь «раскаляется докрасна», начиная излучать в видимом диапазоне.

Видимый свет (380 нм < Л < 780 нм). Излучение в этом промежутке длин волн воспринимается человеческим глазом. Диапазон видимого света можно разделить на семь интервалов — так называемые спек-тральные цвета.

Красный: 625 нм — 780 нм;

Оранжевый: 590 нм — 625 нм;

Жёлтый: 565 нм — 590 нм;

Зелёный: 500 нм — 565 нм;

Голубой: 485 нм — 500 нм;

Синий: 440 нм — 485 нм;

Фиолетовый: 380 нм — 440 нм.

Глаз имеет максимальную чувствительность к свету в зелёной части спектра.

Ультрафиолетовое излучение (10 нм < Л < 380 нм). Главным источником ультрафиолетового излучения является Солнце. Именно ультрафи-олетовое излучение приводит к появлению загара. Человеческим глазом оно уже не вос-принимается. В небольших дозах ультрафиолетовое излучение полезно для человека: оно повышает иммунитет, улучшает обмен веществ, имеет целый ряд других целебных воздействий и потому применяется в физиотерапии. Ультрафиолетовое излучение обладает бактерицидными свойствами. Например, в боль-ницах для дезинфекции операционных в них включаются специальные ультрафиолетовые лампы. Очень опасным является воздействие УФ излучения на сетчатку глаза — при больших дозах ультрафиолета можно получить ожог сетчатки. Поэтому для защиты глаз (высоко в горах, например) нужно надевать очки, стёкла которых поглощают ультрафиолет.

Рентгеновское излучение (5 пм < Л < 10 нм). Возникает в результате торможения быстрых электронов у анода и стенок газоразряд-ных трубок (тормозное излучение), а также при некоторых переходах электронов внутри атомов с одного уровня на другой (характеристическое излучение).

Рентгеновское излучение легко проникает сквозь мягкие ткани человеческого тела, но по-глощается кальцием, входящим в состав костей. Это даёт возможность хорошо известные вам рентгеновские снимки. В аэропортах вы наверняка видели действие рентгенотелевизионных интроскопов — эти приборы просвечивают рентгеновскими лучами ручную кладь и багаж. Длина волны рентгеновского излучения сравнима с размерами атомов и межатомных рас-стояний в кристаллах; поэтому кристаллы являются естественными дифракционными ре-шётками для рентгеновских лучей. Наблюдая дифракционные картины, получаемые при прохождении рентгеновских лучей сквозь различные кристаллы, можно изучать порядок расположения атомов в кристаллических решётках и сложных молекулах. Так, именно с помощью рент,геност,рукт,урного анализа было определено устройство ряда сложных органических молекул — например, ДНК и гемоглобина. В больших дозах рентгеновское излучение опасно для человека — оно может вызывать раковые заболевания и лучевую болезнь.

Гамма-излучение (Л < 5 пм). Это излучение наиболее высокой энергии. Его проникающая способность намного выше, чем у рентгеновских лучей. Гамма-излучение возникает при переходах атомных ядер из одного состояния в другое, а также при некоторых ядерных реакциях. Некоторые насекомые и птицы способны видеть в ультрафиолете. Например, пчёлы с помощью своего уль-трафиолетового зрения находят нектар на цветах. Источниками гамма-лучей могут быть заряженные частицы, движущиеся со скоростя-ми, близкими к скорости света — в случае, если траектории таких частиц искривлены магнитным полем (так называемое синхротронное излучение). В больших дозах гамма-излучение очень опасно для человека: оно вызывает лучевую бо-лезнь и онкологические заболевания. Но в малых дозах оно может подавлять рост раковых опухолей и потому применяется в лучевой терапии. Бактерицидное действие гамма-излучения используется в сельском хозяйстве (гамма-сте-рилизация сельхозпродукции перед длительным хранением), в пищевой промышленности (консервирование продуктов), а также в медицине (стерилизация материалов).

Длина волны – это расстояние между двумя соседними точками, которые колеблются в одной фазе; как правило, понятие "длина волны" ассоциируется с электромагнитным спектром. Метод вычисления длины волны зависит от данной информации. Воспользуйтесь основной формулой, если известны скорость и частота волны. Если нужно вычислить длину световой волны по известной энергии фотона, воспользуйтесь соответствующей формулой.

Шаги

Часть 1

Вычисление длины волны по известным скорости и частоте

    Воспользуйтесь формулой для вычисления длины волны. Чтобы найти длину волны, разделите скорость волны на частоту. Формула: λ = v f {\displaystyle \lambda ={\frac {v}{f}}}

    Используйте соответствующие единицы измерения. Скорость измеряется в единицах метрической системы, например, в километрах в час (км/ч), метрах в секунду (м/с) и так далее (в некоторых странах скорость измеряется в британской системе, например, в милях в час). Длина волны измеряется в нанометрах, метрах, миллиметрах и так далее. Частота, как правило, измеряется в герцах (Гц).

    • Единицы измерения конечного результата должны соответствовать единицам измерения исходных данных.
    • Если частота дана килогерцах (кГц), или скорость волны в километрах в секунду (км/с), преобразуйте данные значения в герцы (10 кГц = 10000 Гц) и в метры в секунду (м/с).
  1. Известные значения подставьте в формулу и найдите длину волны. В приведенную формулу подставьте значения скорости и частоты волны. Разделив скорость на частоту, вы получите длину волны.

    Воспользуйтесь приведенной формулой, чтобы вычислить скорость или частоту. Формулу можно переписать в другом виде и вычислить скорость или частоту, если дана длина волны. Чтобы найти скорость по известным частоте и длине волны, используйте формулу: v = λ f {\displaystyle v={\frac {\lambda }{f}}} . Чтобы найти частоту по известным скорости и длине волны, используйте формулу: f = v λ {\displaystyle f={\frac {v}{\lambda }}} .

    Часть 2

    Вычисление длины волны по известной энергии фотона
    1. Вычислите длину волны по формуле для вычисления энергии фотона. Формула для вычисления энергии фотона: E = h c λ {\displaystyle E={\frac {hc}{\lambda }}} , где E {\displaystyle E} – энергия фотона, измеряемая в джоулях (Дж), h {\displaystyle h} – постоянная Планка, равная 6,626 x 10 -34 Дж∙с, c {\displaystyle c} – скорость света в вакууме, равная 3 x 10 8 м/с, λ {\displaystyle \lambda } – длина волны, измеряемая в метрах.

      • В задаче энергия фотона будет дана.
    2. Перепишите представленную формулу, чтобы найти длину волны. Для этого проделайте ряд математических операций. Обе стороны формулы умножьте на длину волны, а затем обе стороны разделите на энергию; вы получите формулу: λ = h c E {\displaystyle \lambda ={\frac {hc}{E}}} . Если энергия фотона известна, можно вычислить длину световой волны.

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β:

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

герц эксагерц петагерц терагерц гигагерц мегагерц килогерц гектогерц декагерц децигерц сантигерц миллигерц микрогерц наногерц пикогерц фемтогерц аттогерц циклов в секунду длина волны в эксаметрах длина волны в петаметрах длина волны в тераметрах длина волны в гигаметрах длина волны в мегаметрах длина волны в километрах длина волны в гектометрах длина волны в декаметрах длина волны в метрах длина волны в дециметрах длина волны в сантиметрах длина волны в миллиметрах длина волны в микрометрах Комптоновская длина волны электрона Комптоновская длина волны протона Комптоновская длина волны нейтрона оборотов в секунду оборотов в минуту оборотов в час оборотов в сутки

Удельная теплоёмкость

Подробнее о частоте и длине волны

Общие сведения

Частота

Частота - это величина, измеряющая как часто повторяется тот или иной периодический процесс. В физике с помощью частоты описывают свойства волновых процессов. Частота волны - количество полных циклов волнового процесса за единицу времени. Единица частоты в системе СИ - герц (Гц). Один герц равен одному колебанию в секунду.

Длина волны

Существует множество различных типов волн в природе, от вызванных ветром морских волн до электромагнитных волн. Свойства электромагнитных волн зависят от длины волны. Такие волны разделяют на несколько видов:

  • Гамма-лучи с длиной волны до 0,01 нанометра (нм).
  • Рентгеновские лучи с длиной волны - от 0,01 нм до 10 нм.
  • Волны ультрафиолетового диапазона , которые имеют длину от 10 до 380 нм. Человеческому глазу они не видимы.
  • Свет в видимой части спектра с длиной волны 380–700 нм.
  • Невидимое для людей инфракрасное излучение с длиной волны от 700 нм до 1 миллиметра.
  • За инфракрасными волнами следуют микроволновые , с длиной волны от 1 миллиметра до 1 метра.
  • Самые длинные - радиоволны . Их длина начинается с 1 метра.

Эта статья посвящена электромагнитному излучению, и особенно свету. В ней мы обсудим, как длина и частота волны влияют на свет, включая видимый спектр, ультрафиолетовое и инфракрасное излучение.

Электромагнитное излучение

Электромагнитное излучение - это энергия, свойства которой одновременно сходны со свойствами волн и частиц. Эта особенность называется корпускулярно-волновым дуализмом. Электромагнитные волны состоят из магнитной волны и перпендикулярной к ней электрической волны.

Энергия электромагнитного излучения - результат движения частиц, которые называются фотонами. Чем выше частота излучения, тем они более активны, и тем больше вреда они могут принести клеткам и тканям живых организмов. Это происходит потому, что чем выше частота излучения, тем больше они несут энергии. Большая энергия позволяет им изменить молекулярную структуру веществ, на которые они действуют. Именно поэтому ультрафиолетовое, рентгеновское и гамма излучение так вредно для животных и растений. Огромная часть этого излучения - в космосе. Оно присутствует и на Земле, несмотря на то, что озоновый слой атмосферы вокруг Земли блокирует большую его часть.

Электромагнитное излучение и атмосфера

Атмосфера земли пропускает только электромагнитное излучение с определенной частотой. Большая часть гамма-излучения, рентгеновских лучей, ультрафиолетового света, часть излучения в инфракрасном диапазоне и длинные радиоволны блокируются атмосферой Земли. Атмосфера поглощает их и не пропускает дальше. Часть электромагнитных волн, в частности, излучение в коротковолновом диапазоне, отражается от ионосферы. Все остальное излучение попадает на поверхность Земли. В верхних атмосферных слоях, то есть, дальше от поверхности Земли, больше радиации, чем в нижних слоях. Поэтому чем выше, тем опаснее для живых организмов находиться там без защитных костюмов.

Атмосфера пропускает на Землю небольшое количество ультрафиолетового света, и он приносит вред коже. Именно из-за ультрафиолетовых лучей люди обгорают на солнце и могут даже заболеть раком кожи. С другой стороны, некоторые лучи, пропускаемые атмосферой, приносят пользу. Например, инфракрасные лучи, которые попадают на поверхность Земли, используют в астрономии - инфракрасные телескопы следят за инфракрасными лучами, излучаемыми астрономическими объектами. Чем выше от поверхности Земли, тем больше инфракрасного излучения, поэтому телескопы часто устанавливают на вершинах гор и на других возвышенностях. Иногда их отправляют в космос, чтобы улучшить видимость инфракрасных лучей.

Взаимоотношение между частотой и длиной волны

Частота и длина волны обратно пропорциональны друг другу. Это значит, что по мере увеличения длины волны частота уменьшается и наоборот. Это легко представить: если частота колебаний волнового процесса высокая, то время между колебаниями намного короче, чем у волн, частота колебаний которых меньше. Если представить волну на графике, то расстояние между ее пиками будет тем меньше, чем больше колебаний она совершает на определенном отрезке времени.

Чтобы определить скорость распространения волны в среде, необходимо умножить частоту волны на ее длину. Электромагнитные волны в вакууме всегда распространяются с одинаковой скоростью. Эта скорость известна как скорость света. Она равна 299 792 458 метрам в секунду.

Свет

Видимый свет - электромагнитные волны с частотой и длиной, которые определяют его цвет.

Длина волны и цвет

Самая короткая длина волны видимого света - 380 нанометров. Это фиолетовый цвет, за ним следуют синий и голубой, затем зеленый, желтый, оранжевый и, наконец, красный. Белый свет состоит из всех цветов сразу, то есть, белые предметы отражают все цвета. Это можно увидеть с помощью призмы. Попадающий в нее свет преломляется и выстраивается в полосу цветов в той же последовательность, что в радуге. Эта последовательность - от цветов с самой короткой длиной волны, до самой длинной. Зависимость скорости распространения света в веществе от длины волны называется дисперсией.

Радуга образуется похожим способом. Капли воды, рассеянные в атмосфере после дождя, ведут себя так же как призма и преломляют каждую волну. Цвета радуги настолько важны, что во многих языках существуют мнемоника, то есть прием запоминания цветов радуги, настолько простой, что запомнить их могут даже дети. Многие дети, говорящие по-русски, знают, что «Каждый охотник желает знать, где сидит фазан». Некоторые люди придумывают свою мнемонику, и это - особенно полезное упражнение для детей, так как, придумав свой собственный метод запоминания цветов радуги, они быстрее их запомнят.

Свет, к которому человеческий глаз наиболее чувствителен - зеленый, с длиной волны в 555 нм в светлой среде и 505 нм в сумерках и темноте. Различать цвета могут далеко не все животные. У кошек, например, цветное зрение не развито. С другой стороны, некоторые животные видят цвета намного лучше, чем люди. Например, некоторые виды видят ультрафиолетовый и инфракрасный свет.

Отражение света

Цвет предмета определяется длиной волны света, отраженного с его поверхности. Белые предметы отражают все волны видимого спектра, в то время как черные - наоборот, поглощают все волны и ничего не отражают.

Один из естественных материалов с высоким коэффициентом дисперсии - алмаз. Правильно обработанные бриллианты отражают свет как от наружных, так и от внутренних граней, преломляя его, как и призма. При этом важно, чтобы большая часть этого света была отражена вверх, в сторону глаза, а не, например, вниз, внутрь оправы, где его не видно. Благодаря высокой дисперсии бриллианты очень красиво сияют на солнце и при искусственном освещении. Стекло, ограненное так же, как бриллиант, тоже сияет, но не настолько сильно. Это связано с тем, что, благодаря химическому составу, алмазы отражают свет намного лучше, чем стекло. Углы, используемые при огранке бриллиантов, имеет огромное значение, потому что слишком острые или слишком тупые углы либо не позволяют свету отражаться от внутренних стен, либо отражают свет в оправу, как показано на иллюстрации.

Спектроскопия

Для определения химического состава вещества иногда используют спектральный анализ или спектроскопию. Этот способ особенно хорош, если химический анализ вещества невозможно провести, работая с ним непосредственно, например, при определении химического состава звезд. Зная, какое электромагнитное излучение поглощает тело, можно определить, из чего оно состоит. Абсорбционная спектроскопия, являющаяся одним из разделов спектроскопии, определяет какое излучение поглощается телом. Такой анализ можно делать на расстоянии, поэтому его часто используют в астрономии, а также в работе с ядовитыми и опасными веществами.

Определение наличия электромагнитного излучения

Видимый свет, так же как и всё электромагнитное излучение - это энергия. Чем больше энергии излучается, тем легче эту радиацию измерить. Количество излученной энергии уменьшается по мере увеличения длины волны. Зрение возможно именно благодаря тому, что люди и животные распознают эту энергию и чувствуют разницу между излучением с разной длиной волны. Электромагнитное излучение разной длины ощущается глазом как разные цвета. По такому принципу работают не только глаза животных и людей, но и технологии, созданные людьми для обработки электромагнитного излучения.

Видимый свет

Люди и животные видят большой спектр электромагнитного излучения. Большинство людей и животных, например, реагируют на видимый свет , а некоторые животные - еще и на ультрафиолетовые и инфракрасные лучи. Способность различать цвета - не у всех животных - некоторые, видят только разницу между светлыми и темными поверхностями. Наш мозг определяет цвет так: фотоны электромагнитного излучения попадают в глаз на сетчатку и, проходя через нее, возбуждают колбочки, фоторецепторы глаза. В результате по нервной системе передается сигнал в мозг. Кроме колбочек, в глазах есть и другие фоторецепторы, палочки, но они не способны различать цвета. Их назначение - определять яркость и силу света.

В глазу обычно находится несколько видов колбочек. У людей - три типа, каждый из которых поглощает фотоны света в пределах определенных длин волны. При их поглощении происходит химическая реакция, в результате которой в мозг поступают нервные импульсы с информацией о длине волны. Эти сигналы обрабатывает зрительная зона коры головного мозга. Это - участок мозга, ответственный за восприятие звука. Каждый тип колбочек отвечает только за волны с определенной длиной, поэтому для получения полного представления о цвете, информацию, полученную от всех колбочек, складывают вместе.

У некоторых животных еще больше видов колбочек, чем у людей. Так, например, у некоторых видов рыб и птиц их от четырех до пяти типов. Интересно, что у самок некоторых животных больше типов колбочек, чем у самцов. У некоторых птиц, например у чаек, которые ловят добычу в воде или на ее поверхности, внутри колбочек есть желтые или красные капли масла, которые выступают в роли фильтра. Это помогает им видеть большее количество цветов. Подобным образом устроены глаза и у рептилий.

Инфракрасный свет

У змей, в отличие от людей, не только зрительные рецепторы, но и чувствительные органы, которые реагируют на инфракрасное излучение . Они поглощают энергию инфракрасный лучей, то есть реагируют на тепло. Некоторые устройства, например приборы ночного видения, также реагируют на тепло, выделяемое инфракрасным излучателем. Такие устройства используют военные, а также для обеспечения безопасности и охраны помещений и территории. Животные, которые видят инфракрасный свет, и устройства, которые могут его распознавать, видят не только предметы, которые находятся в их поле зрения на данный момент, но и следы предметов, животных, или людей, которые находились там до этого, если не прошло слишком много времени. Например, змеям видно, если грызуны копали в земле ямку, а полицейские, которые пользуются прибором ночного видения, видят, если в земле были недавно спрятаны следы преступления, например, деньги, наркотики, или что-то другое. Устройства для регистрации инфракрасного излучения используют в телескопах, а также для проверки контейнеров и камер на герметичность. С их помощью хорошо видно место утечки тепла. В медицине изображения в инфракрасном свете используют для диагностики. В истории искусства - чтобы определить, что изображено под верхним слоем краски. Устройства ночного видения используют для охраны помещений.

Ультрафиолетовый свет

Некоторые рыбы видят ультрафиолетовый свет . Их глаза содержат пигмент, чувствительный к ультрафиолетовым лучам. Кожа рыб содержит участки, отражающие ультрафиолетовый свет, невидимый для человека и других животных - что часто используется в животном мире для маркировки пола животных, а также в социальных целях. Некоторые птицы тоже видят ультрафиолетовый свет. Это умение особенно важно во время брачного периода, когда птицы ищут потенциальных партнеров. Поверхности некоторых растений также хорошо отражают ультрафиолетовый свет, и способность его видеть помогает в поиске пищи. Кроме рыб и птиц, ультрафиолетовый свет видят некоторые рептилии, например черепахи, ящерицы и зеленые игуаны (на иллюстрации).

Человеческий глаз, как и глаза животных, поглощает ультрафиолетовый свет, но не может его обработать. У людей он разрушает клетки глаза, особенно в роговице и хрусталике. Это, в свою очередь, вызывает различные заболевания и даже слепоту. Несмотря на то, что ультрафиолетовый свет вредит зрению, небольшое его количество необходимо людям и животным, чтобы вырабатывать витамин D. Ультрафиолетовое излучение, как и инфракрасное, используют во многих отраслях, например в медицине для дезинфекции, в астрономии для наблюдения за звездами и другими объектами и в химии для отверждения жидких веществ, а также для визуализации, то есть для создания диаграмм распространения веществ в определенном пространстве. С помощью ультрафиолетового света определяют поддельные банкноты и пропуска, если на них должны быть напечатаны знаки специальными чернилами, распознаваемыми с помощью ультрафиолетового света. В случае с подделкой документов ультрафиолетовая лампа не всегда помогает, так как преступники иногда используют настоящий документ и заменяют на нем фотографию или другую информацию, так что маркировка для ультрафиолетовых ламп остается. Существует также множество других применений для ультрафиолетового излучения.

Цветовая слепота

Из-за дефектов зрения некоторые люди не в состоянии различать цвета. Эта проблема называется цветовой слепотой или дальтонизмом, по имени человека, который первый описал эту особенность зрения. Иногда люди не видят только цвета с определенной длиной волны, а иногда они не различают цвета вообще. Часто причина - недостаточно развитые или поврежденные фоторецепторы, но в некоторых случаях проблема заключается в повреждениях на проводящем пути нервной системы, например в зрительной коре головного мозга, где обрабатывается информация о цвете. Во многих случаях это состояние создает людям и животным неудобства и проблемы, но иногда неумение различать цвета, наоборот - преимущество. Это подтверждается тем, что, несмотря на долгие годы эволюции, у многих животных цветное зрение не развито. Люди и животные, которые не различают цвета, могут, например, хорошо видеть камуфляж других животных.

Несмотря на преимущества цветовой слепоты, в обществе ее считают проблемой, и для людей с дальтонизмом закрыта дорога в некоторые профессии. Обычно они не могут получить полные права по управлению самолетом без ограничений. Во многих странах водительские права для этих людей тоже имеют ограничения, а в некоторых случаях они не могут получить права вообще. Поэтому они не всегда могут найти работу, на которой необходимо управлять автомобилем, самолетом, и другими транспортными средствами. Также им сложно найти работу, где умение определять и использовать цвета имеет большое значение. Например, им трудно стать дизайнерами, или работать в среде, где цвет используют, как сигнал (например, об опасности).

Проводятся работы по созданию более благоприятных условий для людей с цветовой слепотой. Например, существуют таблицы, в которых цвета соответствует знакам, и в некоторых странах эти знаки используют в учреждениях и общественных местах наряду с цветом. Некоторые дизайнеры не используют или ограничивают использование цвета для передачи важной информации в своих работах. Вместо цвета, или наряду с ним, они используют яркость, текст, и другие способы выделения информации, чтобы даже люди, не различающие цвета, могли полостью получить информацию, передаваемую дизайнером. В большинстве случаев люди с цветовой слепотой не различают красный и зеленый, поэтому дизайнеры иногда заменяют комбинацию «красный = опасность, зеленый = все нормально» на красный и синий цвета. Большинство операционных систем также позволяют настроить цвета так, чтобы людям с цветовой слепотой было все видно.

Цвет в машинном зрении

Машинное зрение в цвете - быстроразвивающаяся отрасль искусственного интеллекта. До недавнего времени большая часть работы в этой области проходила с монохромными изображениями, но сейчас все больше научных лабораторий работают с цветом. Некоторые алгоритмы для работы с монохромными изображениями применяют также и для обработки цветных изображений.

Применение

Машинное зрение используется в ряде отраслей, например для управления роботами, самоуправляемыми автомобилями, и беспилотными летательными аппаратами. Оно полезно в сфере обеспечения безопасности, например для опознания людей и предметов по фотографиям, для поиска по базам данных, для отслеживания движения предметов, в зависимости от их цвета и так далее. Определение местоположения движущихся объектов позволяет компьютеру определить направление взгляда человека или следить за движением машин, людей, рук, и других предметов.

Чтобы правильно опознать незнакомые предметы, важно знать об их форме и других свойствах, но информация о цвете не настолько важна. При работе со знакомыми предметами, цвет, наоборот, помогает быстрее их распознать. Работа с цветом также удобна потому, что информация о цвете может быть получена даже с изображений с низким разрешением. Для распознавания формы предмета, в отличие от цвета, требуется высокое разрешение. Работа с цветом вместо формы предмета позволяет уменьшить время обработки изображения, и использует меньше компьютерных ресурсов. Цвет помогает распознавать предметы одинаковой формы, а также может быть использован как сигнал или знак (например, красный цвет - сигнал опасности). При этом не нужно распознавать форму этого знака, или текст, на нем написанный. На веб-сайте YouTube можно увидеть множество интересных примеров использования цветного машинного зрения.

Обработка информации о цвете

Фотографии, которые обрабатывает компьютер, либо загружены пользователями, либо сняты встроенной камерой. Процесс цифровой фото- и видеосъемки освоен хорошо, но вот обработка этих изображений, особенно в цвете, связана с множеством трудностей, многие из которых еще не решены. Это связано с тем, что цветное зрение у людей и животных устроено очень сложно, и создать компьютерное зрение наподобие человеческого - непросто. Зрение, как и слух, основано на адаптации к окружающей среде. Восприятие звука зависит не только от частоты, звукового давления и продолжительности звука, но и от наличия или отсутствия в окружающей среде других звуков. Так и со зрением - восприятие цвета зависит не только от частоты и длины волны, но и от особенностей окружающей среды. Так, например, цвета окружающих предметов влияют на наше восприятие цвета.

С точки зрения эволюции такая адаптация необходима, чтобы помочь нам привыкнуть к окружающей среде и перестать обращать внимание на незначительные элементы, а направить все наше внимание на то, что меняется в окружающей обстановке. Это необходимо для того, чтобы легче замечать хищников и находить пищу. Иногда из-за этой адаптации происходят оптические иллюзии. Например, в зависимости от цвета окружающих предметов, мы воспринимаем цвет двух тел по-разному, даже когда они отражают свет с одинаковой длиной волны. На иллюстрации - пример такой оптической иллюзии. Коричневый квадрат в верхней части изображения (второй ряд, вторая колонка) выглядит светлее, чем коричневый квадрат в нижней части рисунка (пятый ряд, вторая колонка). На самом деле, их цвета одинаковы. Даже зная об этом, мы все равно воспринимаем их, как разные цвета. Поскольку наше восприятие цвета устроено так сложно, программистам трудно описать все эти нюансы в алгоритмах для машинного зрения. Несмотря на эти трудности, мы уже достигли многого в этой области.

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.