Самоорганизующиеся (ad hoc) сети. Что это и зачем это нужно? Самоорганизующиеся сети - будущее связи Гетерогенные и самоорганизующиеся сети

ГЛАВА 26. Самоорганизующиеся сети SON

Одним из подходов классификации беспроводных сетей связи является деление на централизованные инфраструктуры и самоорганизующиеся. Отличительной особенностью самоорганизующихся сетей SON (self-organization) - это возможность в отсутствии централизованной инфраструктуры обмениваться данными любой паре находящихся в зоне радиопокрытия узлов сети. Узлы в SON могут быть одновременно конечными хостами и маршрутизаторами. Соединение организуется на длинные расстояния с помощью специализированных протоколов маршрутизации в промежуточных узлах-маршрутизаторах. Такое соединение называется «многоэтапным или многошаговым» (multihop) . Этапом является участие в этом соединении одного узла - маршрутизатора. В классе SON настоящей главы рассматриваются следующие сети:

· мобильные целевые Ad Hoc сети - Wireless Mobile Ad Hoc Network (MANET);

· беспроводные сенсорные сети - Wireless Sensor Network (WSN);

· беспроводные mesh-сетей Wireless Mesh Network (WMN). Эти сети называют также ячеистыми сетями.

· автомобильные беспроводные сети Vehicular Ad Hoc Network (VANET).

Узлы этих сетей обладают способностью сами находить друг друга и формировать сеть, а в случае выхода из строя какого-либо узла могут устанавливать новые маршруты для передачи сообщений. В главе 24 приводится краткое описание построения самоорганизующихся сетей: MANET, ячеистой сети стандарта 802.11s, ячеистой сети WiMAX (глава 25). В настоящей главе большое внимание уделяется информационной безопасности самоорганизующихся сетей в части анализа угроз (атак) DoS в результате намеренных действий злоумышленника по нарушению работы протоколов маршрутизации.

Функции самоорганизующихся сетей и область их использования

Структура мобильной сети Ad Hoc (MANET) приведена в главе 24. Сети MANET являются распределенной системой, состоящей из мобильных терминалов, снабженных приемо-передатчиками. Они могут организовывать временные сетевые технологии для передачи информации. В сети MANET мобильные устройства выполняют не только функции оконечных станций, но и функции сетевых узлов (роутеров). При этом часто используется не лицензионная полоса частот. Приведем некоторые области применения сетей MANET.

Согласно зарубежным работам наиболее широко применение мобильных сетей Ad Hoc рассматривается для установления связи во время боевых действий. При этом рассматривается установление связи между солдатами, расположенными на земле, в наземном и воздушном транспорте. Большинство узлов связи движутся с различными скоростями. Сети связи с фиксированной инфраструктурой не могут обеспечить надежную связь при таких обстоятельствах высокого темпа и высокой степени непредсказуемости. У системного администратора мало времени для того, чтобы реагировать и реконфигурировать сети. Как правило, сети MANET не требуют администрирования. Временная сеть Ad Hoc может быть развернута, когда создание инфраструктуры невозможно или неэффективно. Например, такая сеть может использоваться, как временное решение на конференциях, а также в незаселенных местах, на которых очень сложно создать инфраструктуру. Небольшое время на развертку сети Ad Hoc делает их незаменимыми при спасательных операциях после катастроф или стихийных бедствий.

Сенсорные сети (WSN)

Сенсорная сеть WSN - это распределенная сеть необслуживаемых миниатюрных узлов, которые осуществляют сбор данных о параметрах внешней среды и передачу их на базовую станцию посредством ретрансляции от узла к узлу с помощью беспроводной связи. Узел сети, называемый сенсором, содержит датчик, воспринимающий данные от внешней среды (собственно сенсор), микроконтроллер, память, радиопередатчик, автономный источник питания и иногда исполнительные механизмы. Возможна также передача управляющих воздействий от узлов сети к внешней среде, Сенсорные сети строятся на основе протоколов IEEE 802.15.4, ZigBee и DigiMesh. С помощью радиосвязи, осуществляемой между узлами сети на основе стандарта ZigBee, создаются самоорганизующиеся и самовосстанавливающиеся сети. Для многих сенсорных сетей характерна мобильность не отдельно каждого узла (как это имеет место в MANET), а отдельной группы узлов. Основное требование к протоколам сенсорных сетей малое потребление энергоресурсов. В сенсорных сетях время их жизнедеятельности прямо зависит от решения вопросов энергопотребления узлов сети.
Сенсорные сети применяются в различных областях - от борьбы с терроризмом до охраны природы. Существует множество приложений, для которых разные производители выпускают разные узлы для создания сенсорных сетей. По области применения приложения сенсорных сетей можно разделить на категории :

· погода, окружающая среда;

· телемедицина;

· чрезвычайные ситуации (пожары, катастрофы и др.);

· военные операции и др.

Ячеистые сети (WMN)

В главе 24 приводится архитектура ячеистой сети (mesh-сети), построенной на протоколе 802.11s, принадлежащем к группе протоколов стандарта 802.11. Как отмечалось выше, mesh-сети могут быть построены на базе протоколов других стандартов- 802.16 и LTE. На рис. 26.1 приведена общая архитектура mesh-сети . Как видно из рисунка mesh-сеть состоит из беспроводной опорной сети (Wireless Mesh Backbone) и поключенных к ней сети Интернет, сети Wi-Fi, сотовых сетей связи, оконечных пользователей. Непрерывной линией обозначен проводный канал, а пунктирной - беспроводный канал.

Беспроводная опорная сеть (Wireless Mesh Backbone) включает следующие маршрутизаторы:

1. mesh-роутер без шлюза (Mesh Router).

2. mesh-роутер c шлюзом (Mesh Router with Gateway), взаимодействующий с Интернетом и остальными типами mesh-роутеров.

3. mesh-роутер c шлюзом и мостом (Mesh Router with Gateway/Bridge), взаимодействующим со всеми mesh-роутерами опорной сети, а также точкой доступа сети WiMAX, базовыми станциями сотовой сети связи и сети WiMAX. узлом сенсорной сети связи (Sink Node), непосредственно с абонентами по проводному или беспроводному каналу.

Рис. 26.1. Архитектура mesh-сети

В работе приводится ещё одна архитектура mesh-сети, позволяющая абонентам дополнительно обеспечивать не только доступ в Интернет, но и связь между собой внутри опорной сети. Сравнивая c MANET и сенсорными сетями, ячеистые беспроводные сети выполняют функцию транзитной сети и отличаются по следующим четырем признакам:

· Роутеры в ячеистых сетях способны пропускать больше трафик и имеют меньше ограничений в плане энергозатрат.

· Сети маршутизаторов могут обеспечить передачу данных на более дальние расстояния.

· Сети маршрутизаторов могут быть использованы в качестве интегратора таких сетей, как Интернет, сотовые сети, беспроводные локальные сети.

· В ячеистых сетях любой роутер имеет, по крайней мере, два радиоканала: один для подключения клиентов, другой для связи с другими роутерами.

Почти любое применение мобильных Ad Hoc сетей, рассмотренное выше, может быть реализовано в беспроводных ячеистых сетях. Основным достоинством ячеистых сетей является способность передавать большие объемы данных на дальние расстояния и обеспечение широкополосного доступа.

Автомобильные беспроводные сети (VANET)

Cоздание автомобильных беспроводных самоорганизующихся сетей VANET предназначено для повышения эффективности и безопасности дорожного движения. В настоящее время при поддержке индустрии, государственных и академических институтов в мире выполняются несколько научно-исследовательских проектов, направленных на разработку и принятие стандартов таких автомобильных сетей. Основные цели использования VANET можно разделить на три группы :

· помощь водителю (навигация, предотвращение столкновений и смена полос);

· информирование (об ограничении скорости или зоне ремонтных работ);

· предупреждение (послеаварийные, о препятствиях или состоянии дорог).


Похожая информация.


В век коммуникационных устройств, социальных сетей и прочих сервисов сообщение на расстоянии и мгновенный обмен информацией кажутся чем-то само собой разумеющимися. Однако возможность оставаться на связи именно в те моменты, когда коммуникационная инфраструктура оказывается нарушенной, приобретает особое значение. Например, на Гаити после недавнего катастрофического землетрясения главным средством связи оказались спутниковые телефоны, предоставленные службами помощи. Но парализовать инфраструктуру сотовой связи могут не только масштабные природные катаклизмы — даже банальное отключение электропитания способны превратить наши мобильные устройства в бесполезные игрушки.
В подобных случаях все более привлекательным вариантом становится создание беспроводной самоорганизующейся (или динамической, или ad hoc) сети. Такая структура формирует сама себя всякий раз, когда специально запрограммированные мобильные телефоны или иные устройства связи оказываются в пределах прямого доступа. Каждое из них выполняет в динамической сети функции и передатчика, и приемника, а также, что очень важно, служит ретрансляционным пунктом для всех ближайших приспособлений. Устройства, расстояние между которыми превышает дальность прямой связи, могут поддерживать связь между собой, если им готовы помочь другие приспособления, находящиеся между ними, передавая сообщения по цепочке, как ведра при пожаре. Иными словами, каждый узел в сети служит и коммуникатором для собственных сообщений, и элементом инфраструктуры для сообщений других узлов.
Помощь при бедствиях — лишь одна из возможных функций самоорганизующихся сетей. Они будут полезны везде, где создание стационарной базы будет слишком долгим, трудным или дорогим. Военные вложили большие деньги в разработку самоорганизующихся систем для применения на поле боя. Динамические сети в вашем доме позволят бытовым приборам находить друг друга и устанавливать связи между собой, избавив от необходимости протягивать провода в спальню или кабинет. Удаленные поселения и малообеспеченные соседи могли бы через беспроводные ad hoc сети получить широкополосный доступ в Интернет. Ученые, исследующие экологические микросреды на верхушках деревьев или гидротермальные источники на дне океана, смогли бы размещать датчики в исследуемых точках, не заботясь о том, будут ли они «слышать» друг друга, или о том, как информация попадет в их компьютер.
Разработка таких сетей ведется уже больше трех десятилетий, но лишь в последние годы успехи теории сетей привели к созданию первых рабочих крупномасштабных систем. В Сан-Франциско новая компания Meraki Network подключила 400 тыс. жителей города к Интернету через свою систему Free the Net, созданную на основе технологии беспроводных самоорганизующихся сетей. Компоненты Bluetooth в сотовых телефонах, компьютерные игровые системы и ноутбуки обеспечивают связь между собой без проводных соединений или специального конфигурирования при помощи технологий динамических сетей. Самоорганизующиеся сети развернуты в ряде удаленных или неблагоприятных мест для сбора информации от маломощных беспроводных датчиков. Для того чтобы подобные сети получили широкое распространение, требуется еще ряд технических прорывов, но на нескольких направлениях успехи уже достигнуты.

Сотовая сеть
Беспроводные самоорганизующиеся сети пока еще редко встречаются. Чтобы понять причину их медленного внедрения, полезно рассмотреть различия между такими новыми технологиями, как сотовые телефоны и Wi-Fi. Когда вы звоните другу по мобильнику, в беспроводной связи задействован только каждый из соединяемых телефонов и ближайшая к нему вышка сотовой связи (базовая станция). Вышки неподвижны и связаны между собой обширной сетью проводов и кабелей. В беспроводных локальных сетях, в частности Wi-Fi, также используются неподвижные антенны и проводные соединения.
Такой подход имеет как достоинства, так и недостатки. Для передачи информации необходима энергия, и в классических беспроводных сетях она запасается в аккумуляторах мобильных устройств (например, телефонов и ноутбуков), а максимально возможная часть коммуникационной нагрузки возлагается на стационарную инфраструктуру, питаемую от электросети. Ширина беспроводной полосы — также фиксированный и ограниченный ресурс. В традиционных беспроводных сетях ширина полосы экономится за счет передачи большей части информации по проводным каналам. Использование стационарной инфраструктуры позволяет создавать большие и наиболее надежные телефонные и WiFi-коммуникационные ресурсы в областях, где потребность в них наиболее велика.
Однако использование фиксированной инфраструктуры делает эти сети уязвимыми: их работа нарушается в случае отключения электропитания и других сбоев даже при исправности отдельных телефонов и других мобильных устройств в зоне действия сети. Надежность динамических сетей намного выше. Если один мобильный прибор отключается, остальные видоизменяют сеть таким образом, чтобы в возможно большей степени компенсировать выбывший элемент. С подключением и отключением устройств сеть подстраивается и «вылечивается» сама.
Но такая перенастройка не дается даром. Сеть должна передавать информацию таким образом, чтобы сообщение могло быть реконструировано даже в том случае, если в ходе передачи послания какие-то звенья цепи связи между отправителем и адресатом прекратят работу. Система должна определять оптимальный путь доставки сообщения адресату даже при условии, что отправляющее устройство не имеет возможности определить местонахождение адресата. Кроме того, сеть должна справляться с неизбежными шумами от множества устройств, одновременно передающих сообщения.

Самоорганизующаяся сеть – сеть, не имеющая определенной структуры, меняющаяся и распределяющая функции между узлами при подключении нового устройства, изменении характера трафика и т.д.

2. История создания и развития

История современных самоорганизующихся сетей начинается с 1970-х годов с момента создания PRNET (Packet Radio Networks), финансированные министерством обороны США. Цель создания самоорганизующихся сетей заключалась в возможности работать в сети, получать доступ к сети Интернет в любом месте, даже в движении, не полагаясь на инфраструктуру фиксированной сети.

С развитием всепроникающих сетей возникла необходимость в использовании нового типа сетей, без устойчивой структуры и способной адаптироваться к меняющимся характеристикам каналов связи. Такие стали называть самоорганизующимися. Первые коммерческие самоорганизующиеся мобильные сети были развернуты в США и Японии в 2009-2010 годах.

Самоорганизующиеся сети в зависимости от скорости самоорганизации, доли участия в ней людей делят на целевые (ad hoc) и ячеистые (mesh) сети. В переводе с латыни «ad hoc» буквально означает «для этого, специально для этого случая». Основное отличие между ad hoc и mesh сетями состоит в том, что, как правило, ad hoc относят к терминальным сетям, a Mesh - к транзитным, хотя это деление весьма условно, но принято в настоящее время.

3. Технические характеристики

Самоорганизующаяся сеть обладает следующими характеристиками:

    Самоконфигурация – распознавание и регистрирование в сети новых подключенных устройств. При этом соседние автоматически корректируют свои технические параметры (например, мощность излучения, наклон антенны и т.д.).

    Самооптимизация – адаптация параметров устройств при изменении параметров сети: количества пользователей, уровня сигнала, уровня внешних помех и др.

    Самовосстановление – автоматическое обнаружение и устранение сбоев: перераспределение функций между устройствами при выходе из строя каких-либо узлов сети для повышения отказоустойчивости сети.

Алгоритмы маршрутизации самоорганизующихся сетей:

    Проактивная маршрутизация – наличие постоянно обновляемых полных списков адресов назначения и маршрутов до них.

    Реактивная маршрутизация – построенные маршрута по необходимости, т.е. при наличии трафика предназначенного определенному адресату, с помощью опросов соседних узлов и алгоритмов обнаружения соседей.

    Гибридная маршрутизация – сочетание элементов проактивной и реактивной маршрутизации. Т.е. хранение таблицы некоторых адресатов, и последующий их опрос по требованию по мере необходимости построения иных маршрутов.

Для организации самоорганизующейся сети чаще всего используют протоколы Bluetooth, Wi-Fi, ZigBee, для маршрутизации – AODV, SAODV, ZRP, OLSR, LAR.

4. Кейсы применения

Быстрое развертывание сенсорных сетей в чрезвычайных ситуациях: например, для поиска пострадавших, анализа масштаба бедствия и т.д. В локальных сетях (сеть HANET), например, при создании системы автоматизации зданий, домов, систем локального позиционирования (RTLS).

В транспортной сфере для системы умного транспорта и умного трафика – сети VANET. В местах массового скопления людей для разгрузки базовых станций и обеспечения связи мобильных устройств напрямую без участия базовых станций (MANET).

5. Полезные ссылки

Источники:

Если в случае «традиционной» беспроводной сети мы должны разворачивать зачастую дорогостоящую инфраструктуру базовых станций, то в случае самоорганизующихся сетей достаточно одной или нескольких точек доступа.

Суть самоорганизующихся сетей — предоставление абоненту возможности доступа к различным сетевым услугам посредством передачи и приема «своего» трафика через соседних абонентов.

Самоорганизующиеся сети связи — сети с изменяемой децентрализованной инфраструктурой. В общем случае данные сети имеют такие преимущества, как широкое покрытие и теоретически широкая абонентская база без большого количества дорогостоящих базовых станций и увеличения мощности излучаемого сигнала.

Если говорить простыми словами, структура простейшей самоорганизующейся сети представляет из себя большое количество абонентов на некоторой площади, которую упрощенно можно назвать площадью покрытия сети, и одну или несколько точек доступа к внешним сетям. Каждое из абонентских устройств, в зависимости от его мощности, обладает своим радиусом действия. Если абонент, находясь «на периферии» посылает пакет абоненту, находящемуся в центре сети или на точку доступа, происходит так называемый многоскачковый процесс передачи пакета через узлы, находящиеся на пути заранее проложенного маршрута. Таким образом можно сказать, что каждый новый абонент за счет своих ресурсов увеличивает радиус действия сети. Следовательно, мощность каждого отдельного устройства может быть минимальной. А это предполагает как меньшие стоимости абонентских устройств, так и лучшие показатели безопасности и электромагнитной совместимости.

На данный момент широким фронтом идут исследования и применения самоорганизующихся сетей в следующих сферах:

Военная связь;

Интеллектуальные транспортные системы;

Локальные сети;

Сенсорные сети;

Обо всех этих направлениях — в следующих статьях.

В настоящее время существует несколько «базовых» технологий для самоорганизующихся сетей:

1. Bluetooth

Самоорганизующиеся на основе Bluetooth состоят из ведущих и ведомых устройств (эти роли могут совмещаться), способных передавать данные как в синхронном, так и в асинхронном режимах. Синхронный режим передачи предполагает прямую связь между ведущим и ведомым устройствами с закрепленным каналом и временными слотами доступа. Данный режим используется в случае ограниченных по времени передач. Асинхронный режим предполагает обмен данными между ведущим и несколькими ведомыми устройствами с использованием пакетной передачи данных. Используется для организации пикосетей. Одно устройство (как ведущее, так и ведомое) может поддерживать до 3-х синхронных соединений.

В синхронном режиме максимальная скорость передачи данных равна 64 кбит/с. Максимальная скорость передачи в асинхронном режиме составляем 720 кбит/с.

Достоинства сетей на базе Bluetooth:

    возможность быстрого развертывания;

    сравнительно малое энергопотребление абонентских устройств;

    широкий спектр поддерживающих эту технологию устройств.

Недостатки сети:

    небольшой радиус действия (радиус действия одного абонентского устройства составляет 0.1 — 100 м);

    малые скорости передачи данных (для сравнения: в сетях WiFi этот показатель составляет 11 — 108 Мбит/с);

    нехватка частотного ресурса.

Возможно, последняя проблема будет решена с выходом устройств Bluetooth 3.0, где предполагается возможность использовать альтернативные протоколы уровней MAC и физического с целью ускоренной передачи данных профилей Bluetooth (AMP). В частности могут быть использованы протоколы стандарта 802.11.

Исходя из вышеприведенного, можно заключить, что сети на основе Bluetooth применимы лишь в местах большого скопления людей (например, в центрах городов, небольших офисах, магазинах). Например подобная сеть может служить для организации видеонаблюдения на небольшом объекте.

Сети стандарта 802.11 изначально были задуманы как способ замены проводных сетей. Однако, относительно высокие скорости передачи (до 108 Мбит/с) делают перспективным возможное применение в тех самоорганизующихся сетях, в которых необходимо передавать большие объемы информации в реальном времени (например, видеосигнала).

2007 году впервые была выпущена черновая версия стандарта 802.11s, определяющего основные характеристики самоорганизующихся сетей на основе WiFi.

В отличии от традиционных сетей WiFi, в которых существует только два типа устройств - «точка доступа» и «терминал», стандарт 802.11s предполагает наличие так называемых «узлов сети» и «порталов сети». Узлы могут взаимодействовать друг с другом и поддерживать различные службы. Узлы могут быть совмещены с точками доступа, порталы же служат для соединения с внешними сетями.

На основе уже существующих стандартов 802.11 можно строить MANET-сети (мобильные самоорганизующиеся сети), отличительной чертой которых можно назвать большую зону покрытия (несколько квадратных километров).

Проблемы, требующие особого внимания при дальнейшем развитии самоорганизующихся сетей на базе WiFi можно разделить на следующие классы:

Проблемы пропускной способности;

Проблемы масштабируемости сетей.

3. ZigBee

Стандарт 802.15.4 (ZigBee) описывает низкоскоростные сети связи малого радиуса действия с маломощными передающими устройствами. Предусмотрено использование трех диапазонов частот: 868-868.6 МГц, 902-928 МГц, 2.4-2.4835 ГГц.

В качестве метода доступа к каналу используется DSSS с различными длинами последовательности для диапазонов 868/915 и 2450 МГц .

Скорости передачи данных варьируются от 20 до 250 кбит/с.

Согласно стандарту сеть ZigBee поддерживает работу с топологиями типа «звезда» и «каждый с каждым».

Существуют два варианта приемопередающих устройств: полнофункциональные (FFD) и неполнофункциональные (RFD). Коренное отличие этих устройств состоит в том, что FFD могут устанавливать прямую связь с любыми устройствами, а RFD — только с FFD.

Сеть ZigBee может состоять из нескольких кластеров, образованных устройствами FFD.

Сети стандарта ZigBee могут работать в режиме mesh. При этом предполагается, что каждый узел сети (узел сети образует устройство FFD, RFD работают в качестве т.н. сенсоров) постоянно следит за состоянием соседних узлов, обновляя при необходимости свои маршрутные таблицы.

В отличии от всех предыдущих вариантов сетей ad hoc, ZigBee рассчитана на низкие скорости передачи данных и проблемы возможности увеличения таковых не существует.

Выше мы рассмотрели основные архитектуры нейронных сетей и принципы их создания, обучения и функционирования. Основная часть теоретических достижений в этой области связана именно с такими архитектурами. Однако существует еще два малоисследованных, но перспективных направления – это алгоритмы обучения, не требующие предоставления обучающих образцов (самообучение) и сети с обратными связями, позволяющие выделять не только пространственные, но и временные характеристики входных сигналов.

Самоорганизующиеся сети являются одним из наиболее интересных направлений в области. Такие сети способны выделять корреляции во входных данных и приводить свое состояние в соответствие с ними. Самоорганизующиеся сети способны выделять близкие входные образы так, что они вызывают возбуждение близких нейронов выходного слоя.

Демонстрационный пример «Competitive learning» показывает реализацию классификатора с использованием самоорганизующихся сетей.

Рисунок 31. Использование самоорганизующихся сетей для классификации

(Competitive learning)

Рисунок 32. Самоорганизующйся слой

Обучение сети происходит так, что при подаче на вход сети нового вектора, значительно отличающегося от существующих классов, в сети создается новый класс. Если же вектор близок к одному из существующих классов, то веса изменяются для приведения его в соответствие с новыми данными. Понятно, что для такого рода сети число классов, которые она способна выделять равно числу нейронов соревнующегося слоя. Создание сети осуществляется с помощью функции newc:

net = newc(, 2);

где первый аргумент – диапазоны значений входных сигналов, а второй – число нейронов в слое.

Обучается сеть с помощью правила обучения Кохонена (learnk):

где i –индекс выигравшего нейрона (обучению подвергается i-й ряд весовой матрицы)

Одно из ограничений самообучающихся сетей – это то, что не все нейроны могут быть задействованы в распознавании. Если изначально веса нейрона далеки от входных векторов, то такой нейрон никогда не выиграет в соревновании, и, соответственно, не будет подвергаться обучению. Чтобы обойти это ограничение, используются смещения. Положительное смещение, прибавленное к отрицательному расстоянию, делает вероятность выигрыша для нейрона выше. Таким образом, при обучении, смещения наиболее успешных нейронов уменьшаются, а менее успешных – увеличиваются, что приводит к равномерному распределению распознаваемых сигналов по нейронам. Такого рода обучение осуществляется с помощью функции learncon.

Другой тип самообучающихся сетей, имеющих некоторые преимущества перед рассмотренными – это так называемые самообучающиеся карты. Архитектура этих сетей приведена на следующем рисунке:

Рисунок 33. Самоорганизующаяся карта

В них обучение производится не только над самим нейроном, выигравшем соревнование, но и над его ближайшими соседями, что приводит к тому, что близко расположенные в сети нейроны учатся распознавать близкие образы, т.е. сеть запоминает топологию сигналов. Правило обучения для таких сетей приведено ниже:

Самоорганизующиеся карты могут иметь различную топологию (прямоугольные ячейки, шестиугольные ячейки, случайное расположение весов) и по-разному определять расстояние между нейронами.