Методы очистки воздуха от пыли. Пылеуловители. Как почистить компьютер от пыли и заменить термопасту Чистка монитора компьютера от пыли

Для многих из нас компьютер стал тем местом, у которого мы проводим значительное время: на работе и дома. Как и любой технике, компьютеру время от времени требуется капитальная уборка. Посмотрите на монитор, на нем обязательно найдутся следы от пальцев, грязные разводы или пыль, на клавиатуре - жирные пятна, под клавишами - крошки, волоски, следы от пролитого когда-то кофе; мышка почему-то отказывается, как прежде, легко скользить по коврику, системный блок гудит, как падающий самолет. Может быть, стоит навести порядок?

О том, как правильно почистить свой компьютер от накопившейся сверху грязи и пыли я уже писала:

Сегодня мы поговорим о том, как правильно почистить системный блок.

Чистка “системника”, наверное, самое сложное и ответственное мероприятие. Если вы никогда не разбирали системный блок, то лучше ничего не трогайте от греха подальше или делайте уборку вместе со знакомым специалистом.

Если внутри системного блока накопилось много пыли, то “кулеры” (вентиляторы) становятся более шумными, а компьютер из-за плохого охлаждения во время выполнения сложных задач, может зависать.

Внимание!
1 Перед чисткой обязательно отключите компьютер от сети!
2 Обязательно снимите с себя статическое напряжение. Сделать это можно дотронувшись рукой до неокрашенного места на батарее отопления или водопровода.
3 Не желательно находиться в синтетической или другой одежде, создающей статику. Даже самое минимальное напряжение может вывести микросхемы из строя. И не надейтесь, что вы случайно не дотронетесь до таких то деталей.

Это обязательные процедуры во всех случаях, когда вам приходится оперировать с начинкой компьютера.

Снаружи почистить не составит труда, только обходитесь без обилия воды, слегка увлажненная тряпочка или чистящая салфетка вам в помощь.

Рассмотрим, как почистить компьютер изнутри

по порядку. При этом будем исходить из того, что все компоненты системного блока исправны и вентиляция внутри него сделана достаточно грамотно.

Если мы говорим о домашнем обслуживании техники, значит, имеем в виду, что у нас нет специальных средств. Так вот для работы нам понадобятся:

Крестовая отвертка (для снятия боковой стенки блока)

Малярная кисточка с длиной ворса не меньше 40мм

Полиэтиленовая клеенка (под системный блок)

Пылесос

Вначале необходимо полностью отключить все составные части вашего ПК (системный блок, монитор, принтер) от электрической сети, причем обязательно вынуть вилку шнура питания из розетки. Если у вас есть источник бесперебойного питания необходимо отключить шнуры, идущие с его выходов на вышеуказанные устройства.

Аккуратно, не допуская ударных воздействий, располагаем системный блок левой боковой стенкой к себе и стелим под него клеенку. Все вентиляционные отверстия чистим пылесосом с надетой длинноворсовой щеткой.

Теперь нужно избавиться от статического электричества (статический заряд на вашем теле может сжечь какие-нибудь чувствительные детали) - подержитесь за батарею отопления, чтобы ваш потенциал сравнялся с “землей”. Не стоит думать, что если компьютер выключен, то он полностью обесточен - в современных компьютерах с корпусами ATX, на материнской плате всегда присутствует дежурное напряжение. Проверьте еще раз, выключен ли компьютер из розетки. Выключен? Тогда отсоединяйте все провода и кабели, откручивайте болты на задней стороне системного блока и снимайте боковые крышки.

С помощью отвертки снимаем боковую стенку корпуса . Откручиваем фигурной отверткой два винтика с торца крышки и открываем чуть потянув ее назад относительно корпуса. Возможны другие варианты с защелками, зависит от производителя корпусов.

Осматриваем фронт предстоящих работ. За счёт вентиляторов в компьютере постоянно циркулирует воздух, пыль из которого остаётся внутри корпуса. Больше всего её будет, конечно, на дне системного блока.
Так как пыль со временем металлизируется из-за трущихся частей вентиляторов (щетки и коллектор), её скапливание может привести к короткому замыканию внутри блока питания, повреждению модулей памяти и т.п.

Уфф! Ну и пылища!

Да тут есть над чем поработать!
Возможно у Вас и не будет столько пыли. Этот компьютер не чистили около двух лет, вот вам и результат. Обратите внимание на кучу, которая лежит на видеокарте, из такого количества пыли можно носки связать или варежки:о)

Производим осмотр материнской платы и установленных на ней компонентов на предмет наличия пыли, шерсти, пуха и других посторонних предметов, ухудшающих тепловой режим компонентов системного блока.

Особое внимание обращаем на радиаторы и установленные вентиляторы (центральный процессор, микросхемы мостов, видеокарта, накопитель на жестких дисках).

Вооружитесь баллоном с сжатым воздухом (продается в компьютерных магазинах, другое название — пневматический очиститель) и кистью. И вперёд:



В крайнем случае подойдёт обычный домашний пылесос (в этом случае нужно убрать металлические трубки его ручки и установить плоскую (щелевую) насадку прямо на гибкий шланг), но его эффективность мала (особенно под кулером на процессоре), и появляется возможность случайно повредить компоненты.
Многие спорят, как правильно удалять пыль, на “вдохе” или на “выдохе”. Принципиальной разницы нет, но если вы не хотите гонять пыль по дому, ставьте на “вдох”. В интернете часто рекомендуют пыль из системного блока именно выдувать, но в таком случае Вы за каких-то пять минут вдохнете в свои легкие годовой запас пыли.
Включаем пылесос на средний уровень мощности.

Сразу же пылесосим решетку вениляции и блока питания.

Берем малярную кисть (ширина её щетины должна составлять примерно 0,5-0,7 см.) и аккуратно, не прилагая чрезмерных усилий, плавными движениями снимаем обнаруженные самые крупные клочки пыли и другой мусор, тут же орудуя пылесосом, дабы не допустить разлёта пыли. То есть кисточка и пылесос у вас работают синхронно.
Не забудьте обесточить и отсоединить провода от задней части корпуса системного блока!
Процесс начинаем с верхней части системного блока, продвигаясь по мере очистки вниз, а в недоступных местах можно продуть воздухом.
Убираем пыль со всех горизонтальных участков - дно корпуса, поверхность оптических приводов и жёстких дисков, видеокарты и прочих плат расширения. Действуя кисточкой, как мини-веником, просто сметаем пыль в жерло пылесосного шланга.
Затем аккуратно, чтобы не сломать, освобождаете все слоты и пылесосите все самые удаленные участки.

По возможности избегая рассоединения проводов и прямого физического контакта насадки с платами, пропылесосьте внутренности системного блока , уделяя особое внимание уголкам и щелям, а также ближайшим окрестностям процессора.

Для удобства работы, можно, открутив винты и отсоединив шлейфы, снять оптический привод и жесткие диски.
Важно не напутать с обратным подключением этих устройств.
Устройства с интерфейсом IDE (где шлейф широкий и содержит 80 проводов) подключаются так. Держим устройство задней стороной к себе, не “вверх ногами”. Слева у нас будет широкий разьём для шлейфа, справа - разьём питания. Шлейф мы подключам так, чтобы крайний провод с маркировкой оказался справа, ближе к разьёму питания (зачастую перепутать нельзя, так как в шлейфе один контакт запаян, и, соответственно, нет пина в устройстве). Разьём питания подключается так, чтобы желтый провод (12 вольт) был справа, а красный - слева. Однако, разъем питания сделан так, что перепутать подключение довольно затруднительно.
Надо быть очень сильным физически человеком, чтобы перепутать разьёмы и шлейфы устройств с интерфейсом sata.
Попросту, постарайтесь запомнить, сфотографировать или зарисовать соединения, прежде чем начнёте их разъединять.

Приступаем к удалению накопившихся сгустков пыли с радиатора и кулера охлаждения процессора.

Когда будете пылесосить “кулеры”, рекомендуется или застопорить их вращение или отключить их от платы. Придерживая кулер одним пальцем от вращения пылесосим его. Поднесите насадку (а можно и трубку без насадки) прямо к вентилятору процессора, чтобы выдуть из него, а также из щелей радиатора всю пыль. Аккуратно покрутите крыльчатку вентилятора и убедитесь, что под ней не застряло комков пыли. Потом, просунув насадку между лопастями вентилятора, прочищаем сам радиатор. Не давайте кулеру сильно раскрутиться, он может выйти из строя.

Если вы с железом на ты, то лучше сделать так: аккуратно откручиваем вентилятор от радиатора.

Затем всё высасываем пылесосом. Вот такой слой не даёт потоку воздуха охлаждать радиатор, который в свою очередь охлаждает процессор.

Лопасти вентилятора тоже следует почистить.Сначала пылесосом, а затем при помощи чистящих салфеток пропитанных спиртовым раствором.

Если у вас также наблюдается шум, жужжание или своеобразный рёв при включении ПК или во время работы, то скорее всего это высохла смазка вентилятора - “кулер” нужно смазать . Аккуратно открутите его и, отклеив маленькую наклейку на основании, капните туда каплю машинного масла.
Когда требуемая чистота будет достигнута, собираете все назад. Ничего не перепутайте! Собрали? Включайте. Если все включается, поздравляю, вы все сделали правильно!

Так же внимательно осматриваем состояние материнской платы , внутренностей корпуса, других поверхностей.

В таком беспорядке работать будет очень сложно

Для удобства снимаем с материнской платы периферийные устройства - видеокарту, модем, тв-тюнер (что у вас там ещё..).

  • Отсоединив все кабели питания внутри системного блока можно удалить блок питания (перед тем как отсоединять кабели запомните что куда подключается, или повесьте бирки чтобы потом не запутаться). Как правило он крепится всего несколькими винтами, так что с этим трудностей не будет.
  • Снимаем видеокарту. Для этого откручиваем крепежный винт на задней стенке системного блока (или отжав пластиковую защёлку), осторожно снимаем устройство, начиная от края материнской платы. Помните, что хвост видеокарты часто крепится также пластиковой защелкой, которую следует отжать. Не забудьте отключить провода от видеокарты, прежде чем будете её снимать.
  • Отсоединив интерфейсный кабель и кабель питания, откручиваем крепежные винты жесткого диска и снимаем его.

Эти устройства следует, выложив на чистую поверхность, также почистить кистью и пылесосом. Так как они располагаются монтажными элементами вниз, пыль оседает на обратной, верхней, стороне. Нижнюю сторону также нужно почистить.
Обращаем особое внимание на вентилятор и радиатор видеокарты. Тщательно вычищаем оттуда всю пыль. Если приставить шланг пылесоса близко к вентилятору, последний начнёт вращаться. Воспользуйтесь этим, чтобы, затормозив крыльчатку кистью или рукой, поднять всю засевшую пыль и устранить её пылесосом.
Аналогично можно чистить и остальные вентиляторы.

Видеокарта теперь выглядит как новенькая.

Кулер на жестком диске просто блестит:

Блок питания для чистки тоже желательно разобрать, пыли в нем собирается огромное количество.

Все, теперь смело можно устанавливать комплектующие на свои места (не забываем о замене термопасты, если снимали радиатор с процессора)

Если вы не уверены в том, что сможете собрать компьютер обратно, лучше не снимайте доп. устройства с материнской платы, то есть предыдущий шаг надо умудриться выполнить на компьютере в сборе. Однако, вследствие плотной укомплектованности компьютеров, это может оказаться затруднительным.

Пылесосим аккуратно, не дотрагиваясь до деталей насадкой, можете сковырнуть мельчайшие детали припаянные к плате. Можно просто подставить пальчик между насадкой и платой, делая маленкий зазор, поскольку вы разрядились, можете пальцами упираться в материнскую плату, тем самым придерживая насадку от касания деталей

Особое внимание при чистке материнсой платы следует уделять пространству вокруг процессора. Его выделяет большой радиатор с вентилятором (кулером). Если есть возможность, снимите вентилятор, не снимая радиатор с процессора (в противном случае можно нарушить слой термопасты, которая служит для лучшей передачи тепла от процессора на радиатор) как рассказывалось выше. Как следует, осторожно, кистью чистим пространство вокруг процессора, немедленно всасывая пылесосом пыль. Модули памяти можно осторожно снять, при условии, разумеется, что вы сможете правильно установить их обратно. Впрочем, можно и не делать этого, почистив установленные планки памяти.
Постепенно обрабатываем кистью всю материнскую плату, уделяя особое внимание радиаторам и вентиляторам, а также особо пыльным местам.

Возможно у вас имеется кулер и под передней панелью корпуса. Он забивается так же часто как и процессорный. Пылесоим его сначала снаружи, потом внутри.

Если вы не умеете снимать и монтировать железо, чистим видеокарту, не снимая. Поскольку на видеокартах кулер располагается внизу, подлезать к нему крайне не удобно. Хотя они особо и не забиваются пылью, но слегка почистить можно. Исключение составляет референсная система охлаждения, там для чистки потребуется немного разобрать видеокарту.

Не забываем про вентиляцию блока питания изнутри, там тоже есть чего почистить

Иногда внутренности системного блока облюбовывают бытовые насекомые. Их нужно изгонять при помощи того же пылесоса или других механических методов воздействия.

Внимание! Применение различных аэрозолей, жидкостей и порошков не допускается!

После окончания всех манипуляций с очисткой внутренностей системного блока той же кисточкой выметаем упавший мусор со дна корпуса на клеенку, либо удаляем пыль пылесосом.

Собираем компьютер.
Устанавливаем снятые модули памяти, периферийные устройства, вентиляторы, жесткие диски и оптические приводы.
Подключаем, проверяем правильность сборки. Затягиваем крепёжные винты.
Не спешите закрывать крышку.
Включите компьютер, чтобы убедиться, что всё работает и грузится, желательно с помощью биоса или прикладных программ проверить температуру ключевых элементов - процессора, жестких дисков, ядра видеокарты.
Если всё работает, ставим и закручиваем крышки. Всё.

Ставим боковую стенку корпуса на место. Восстанавливаем все коммутации, подключение к розетке электросети осуществляем в последнюю очередь.

Процедуру чистки желательно проводить каждые три месяца, а если системный блок стоит на полу, то и раз в два месяца.
Пыль в вентиляторе приводит к его порче и перегреву процессора. Поэтому уборка — не дань эстетике, а жизненная необходимость.
И, конечно, следите за пылью в комнате, где расположен компьютер. Регулярно делайте влажную уборку, при возможности приобретите увлажнитель воздуха (кстати, существуют специальные USB-увлажнители, предназначенные для людей, много времени проводящих за компьютером) - это скажется позитивно не только на компьютере, но и на вашем здоровье.

Это основной уход за компьютером , но есть еще кое что... дело в том, что для хорошего отвода тепла от микросхем и процессоров используется специальная термопаста. Рекомендуется менять ее один раз в году, поскольку термопаста постепенно теряет свои свойства. Теряется эластичность, соответственно плотность прилегания к деталям и в результате качество отвода тепла.

Лучше всего доверять замену термопасты на процессоре и видеокарте специалистам сервисного центра.

По материалам winblogs.ru, akak.ru

А вот как быстренько почистить внутренности компьютера при помощи фена :

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методы очистки воздуха от пыли

Для обезвреживания аэрозолей (пылей и туманов) используют сухие, мокрые и электрические методы. Кроме того, аппараты отличаются друг от друга как по конструкции, так и по принципу осаждения взвешенных частиц. В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. В мокрых пылеуловителях осуществляется контакт запыленных газов с жидкостью. При этом осаждение происходит на капли, на поверхность газовых пузырей или на пленку жидкости. В электрофильтрах отделение заряженных частиц аэрозоля происходит на осадительных электродах.

К сухим механическим пылеуловителям относятся аппараты, в которых использованы различные механизмы осаждения: гравитационный, инерционный и центробежный.

Инерционные пылеуловители. При резком изменении направления движения газового потока частицы пыли под воздействием инерционной силы будут стремиться двигаться в прежнем направлении и после поворота потока газов выпадают в бункер. Эффективность этих аппаратов небольшая.

Жалюзийные аппараты. Эти аппараты имеют жалюзийную решетку, состоящую из рядов пластин или колец. Очищаемый газ, проходя через решетку, делает резкие повороты. Пылевые частицы вследствие инерции стремятся сохранить первоначальное направление, что приводит к отделению крупных частиц из газового потока, тому же способствуют их удары о наклонные плоскости решетки, от которых они отражаются и отскакивают в сторону от щелей между лопастями жалюзи В результате газы делятся на два потока. Пыль в основном содержится в потоке, который отсасывают и направляют в циклон, где его очищают от пыли и вновь сливают с основной частью потока, прошедшего через решетку. Скорость газа перед жалюзийной решеткой должна быть достаточно высокой, чтобы достигнуть эффекта инерционного отделения пыли.

Обычно жалюзийные пылеуловители применяют для улавливания пыли с размером частиц >20 мкм.

Эффективность улавливания частиц зависит от эффективности решетки и эффективности циклона, а также от доли отсасываемого в нем газа.

Циклоны. Циклонные аппараты наиболее распространены в промышленности.

По способу подвода газов в аппарат их подразделяют на циклоны со спиральными, тангенциальным и винтообразным, а также осевым подводом. Циклоны с осевым подводом газов работают как с возвратом газов в верхнюю часть аппарата, так и без него.

Газ вращается внутри циклона, двигаясь сверху вниз, а затем движется вверх. Частицы пыли отбрасываются центробежной силой к стенке. Обычно в циклонах центробежное ускорение в несколько сот, а то и тысячу раз больше ускорения силы тяжести, поэтому даже весьма маленькие частицы пыли не в состоянии следовать за газом, а под влиянием центробежной силы движутся к стенке.

В промышленности циклоны подразделяются на высокоэффективные и высокопроизводительные.

При больших расходах очищаемых газов применяют групповую компоновку аппаратов. Это позволяет не увеличивать диаметр циклона, что положительно сказывается на эффективности очистки. Запыленный газ входит через общий коллектор, а затем распределяется между циклонами.

Батарейные циклоны - объединение большого числа малых циклонов в группу. Снижение диаметра циклонного элемента преследует цель увеличения эффективности очистки.

Вихревые пылеуловители. Отличием вихревых пылеуловителей от циклонов является наличие вспомогательного закручивающего газового потока.

В аппарате соплового типа запыленный газовый поток закручивается лопаточным завихрителем и движется вверх, подвергаясь при этом воздействию трех струй вторичного газа, вытекающих из тангенциально расположенных сопел. Под действием центробежных сил частицы отбрасываются к периферии, а оттуда в возбуждаемый струями спиральный поток вторичного газа, направляющий их вниз, в кольцевое межтрубное пространство. Вторичный газ в ходе спирального обтекания потока очищаемого газа постепенно полностью проникает в него. Кольцевое пространство вокруг входного патрубка оснащено подпорной шайбой, обеспечивающей безвозвратный спуск пыли в бункер. Вихревой пылеуловитель лопаточного типа отличается тем, что вторичный газ отбирается с периферии очищенного газа и подается кольцевым направляющим аппаратом с наклонными лопатками.

В качестве вторичного газа в вихревых пылеуловителях может быть использован свежий атмосферный воздух, часть очищенного газа или запыленные газы. Наиболее выгодным в экономическом отношении является использование в качестве вторичного газа запыленных газов.

Как и у циклонов, эффективность вихревых аппаратов с увеличением диаметра падает. Могут быть батарейные установки, состоящие из отдельных мультиэлементов диаметром 40 мм.

Динамические пылеуловители. Очистка газов от пыли осуществляется за счет центробежных сил и сил Кориолиса, возникающих при вращении рабочего колеса тягодутьевого устройства.

Наибольшее распространение получил дымосос-пылеуловитель. Он предназначен для улавливания частиц пыли размером >15 мкм. За счет разности давлений, создаваемых рабочим колесом, запыленный поток поступает в «улитку» и приобретает криволинейное движение. Частицы пыли отбрасываются к периферии под действием центробежных сил и вместе с 8-10% газа отводятся в циклон, соединенный с улиткой. Очищенный газовый поток из циклона возвращается в центральную часть улитки. Очищенные газы через направляющий аппарат поступают в рабочее колесо дымососа-пылеуловителя, а затем через кожух выбросов в дымовую трубу.

Фильтры. В основе работы всех фильтров лежит процесс фильтрации газа через перегородку, в ходе которого твердые частицы задерживаются, а газ полностью проходит сквозь нее.

В зависимости от назначения и величины входной и выходной концентрации фильтры условно разделяют на три класса: фильтры тонкой очистки, воздушные фильтры и промышленные фильтры.

Рукавные фильтры представляют собой металлический шкаф, разделенный вертикальными перегородками на секции, в каждой из которых размещена группа фильтрующих рукавов. Верхние концы рукавов заглушены и подвешены к раме, соединенной с встряхивающим механизмом. Внизу имеется бункер для пыли со шнеком для ее выгрузки. Встряхивание рукавов в каждой из секций производится поочередно. (рис 6)

Волокнистые фильтры. Фильтрующий элемент этих фильтров состоит из одного или нескольких слоев, в которых однородно распределены волокна. Это фильтры объемного действия, так как они рассчитаны на улавливание и накапливание частиц преимущественно по всей глубине слоя. Сплошной слой пыли образуется только на поверхности наиболее плотных материалов. Такие фильтры используют при концентрации дисперсной твердой фазы 0,5-5 мг/м 3 и только некоторые грубоволокнистые фильтры применяют при концентрации 5-50 мг/м 3 . При таких концентрациях основная доля частиц имеет размеры менее 5-10 мкм.

Различают следующие виды промышленных волокнистых фильтров:

Сухие - тонковолокнистые, электростатические, глубокие, фильтры предварительной очистки (предфильтры);

Мокрые - сеточные, самоочищающиеся, с периодическим или непрерывным орошением.

Процесс фильтрации в волокнистых фильтрах состоит из двух стадий. На первой стадии уловленные частицы практически не изменяют структуры фильтра во времени, на второй стадии процесса в фильтре происходят непрерывные структурные изменения вследствие накопления уловленных частиц в значительных количествах.

Зернистые фильтры. Применяются для очистки газов реже, чем волокнистые фильтры. Различают насадочные и жесткие зернистые фильтры.

Полые газопромыватели. Наиболее распространены полые форсуночные скрубберы. Они представляют колонну круглого или прямоугольного сечения, в которой осуществляется контакт между газом и каплями жидкости. По направлению движения газа и жидкости полые скрубберы делят на противоточные, прямоточные и с поперечным подводом жидкости.

Насадочные газопромыватели представляют собой колонны с насадкой навалом или регулярной. Их используют для улавливания хорошо смачиваемой пыли, но при невысокой концентрации.

Газопромыватели с подвижной насадкой имеют большое распространение в пылеулавливании. В качестве насадки используют шары из полимерных материалов, стекла или пористой резины. Насадкой могут быть кольца, седла и т.д. Плотность шаров насадки не должна превышать плотности жидкости.

Скрубберы с подвижной шаровой насадкой конической формы (КСШ). Для обеспечения стабильности работы в широком диапазоне скоростей газа, улучшения распределения жидкое и уменьшения уноса брызг предложены аппараты с подвижной шаровой насадкой конической формы. Разработано два типа аппаратов: форсуночный и эжекционный

В эжекционном скруббере орошение шаров осуществляет жидкостью, которая всасывается из сосуда с постоянным уровнем газами, подлежащими очистке.

Тарельчатые газопромыватели (барботажные, пенные). Наиболее распространены пенные аппараты с провальными тарелками или тарелками с переливом. Тарелки с переливом имеют отверстия диаметром 3-8 мм. Пыль улавливается пенным слоем, который образуется при взаимодействии газа и жидкости.

Эффективность процесса пылеулавливания зависит от величины межфазной поверхности.

Пенный аппарат со стабилизатором пенного слоя. На провальной решетке устанавливается стабилизатор, представляющий собой сотовую решетку из вертикально расположенных пластин, разделяющих сечение аппарата и пенный слой на небольшие ячейки. Благодаря стабилизатору происходит значительное накопление жидкости на тарелке, увеличение высоты пены по сравнению с провальной тарелкой без стабилизатора. Применение стабилизатора позволяет существенно сократить расход воды на орошение аппарата.

Газопромыватели ударно-инерционного действия. В этих аппаратах контакт газов с жидкостью осуществляется за счет удара газового потока о поверхность жидкости с последующим пропусканием газожидкостной взвеси через отверстия различной конфигурации или непосредственным отводом газожидкостной взвеси в сепаратор жидкой фазы. В результате такого взаимодействия образуются капли диаметром 300-400 мкм.

Г азопромыватели центробежного действия. Наиболее распространены центробежные скрубберы, которые по конструктивному признаку можно разделить на два вида: 1) аппараты, в которых закрутка газового потока осуществляется при помощи центрального лопастного закручивающего устройства; 2) аппараты с боковым тангенциальным или улиточным подводом газа.

Скоростные газопромыватели (скрубберы Вентури). Основной частью аппаратов является труба-распылитель, в которой обеспечивается интенсивное дробление орошаемой жидкости газовым потоком, движущимся со скоростью 40-150 м/с. Имеется также каплеуловитель.

Электрофильтры. Очистка газа от пыли в электрофильтрах происходит под действием электрических сил. В процессе ионизации молекул газов электрическим разрядом происходит заряд содержащихся в них частиц. Ионы абсорбируются на поверхности пылинок, а затем под воздействием электрического поля они перемещаются и осаждаются к осадительным электродам.

Для обезвреживания отходящих газов от газообразных и парообразных токсичных веществ применяют следующие методы: абсорбции (физической и хемосорбции), адсорбции, каталитические, термические, конденсации и компримирования.

Абсорбционные методы очистки отходящих газов подразделяют по следующим признакам: 1) по абсорбируемому компоненту; 2) по типу применяемого абсорбента; 3) по характеру процесса - с циркуляцией и без циркуляции газа; 4) по использованию абсорбента - с регенерацией и возвращением его в цикл (циклические) и без регенерации (не циклические); 5) по использованию улавливаемых компонентов - с рекуперацией и без рекуперации; 6) по типу рекуперируемого продукта; 7) по организации процесса - периодические и непрерывные; 8) па конструктивным типам абсорбционной аппаратуры.

Для физической абсорбции на практике применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей и щелочей, органические вещества и водные суспензии различных веществ.

Выбор метода очистки зависит от многих факторов: концентрации извлекаемого компонента в отходящих газах, объема и температуры газа, содержания примесей, наличия хемосорбентов, возможности использования продуктов рекуперации, требуемой степени очистки. Выбор производят на основании результатов технико-экономических расчетов.

Адсорбционные методы очистки газов используют для удаления из них газообразных и парообразных примесей. Методы основаны на поглощении примесей пористыми телами-адсорбентами. Процессы очистки проводят в периодических или непрерывных адсорберах. Достоинством методов является высокая степень очистки, а недостатком - невозможность очистки запыленных газов.

Каталитические методы очистки основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности твердых катализаторов. Очистке подвергаются газы, не содержащие пыли и катализаторных ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Их проводят в реакторах различной конструкции. Термические методы применяют для обезвреживания газов от легко окисляемых токсических примесей.

Методы очистки воздуха от пыли при выбрасывании в атмосферу

Для очистки воздуха от пыли при меняют пылеуловители и фильтры:

Фильтры - устройства, в которых отделение пылевых частиц от воздуха производится путем филь трации через пористые материалы.

Типы пылеулавливающих аппаратов:

Основными показателями являются:

производительность (или пропускная способность аппарата), оп ределяемая объемом воздуха, который может быть очищен от пыли за единицу времени (м 3 /час);

аэродинамическое сопро тивление аппарата прохождению че рез него очищаемого воздуха (Па). Оно определяется разностью давле ний на входе и выходе.

общий коэффициент очи стки или общая эффективность пыле улавливания, определяемая отношени ем массы пыли, уловленной аппаратом С у, к массе пыли, поступившей в него с загрязненным воздухом С вх: С у /С вх х 100 (%);

фракционный коэффици ент очистки, т. е. эффективность пылеулавливания аппарата по отно шению к различным по крупности фракциям (в долях единицы или в %)

Пылеосадительные камеры, эффективность пылеулавливния - 50 … 60 %. Принцип очистки - истечение запыленного воздуха из камеры со скоростью меньшей скорости витания пыли, т.е. пыли успевает осесть (см. рис. 1).

Циклоны - эффективность пылеулавливния - 80...90%. Принцип очистки - отброс тяжелых частиц пыли на стенки циклона при закручивании потока запыленного воздуха (см. рис. 2). Гидравлическое сопротивление циклонов колеблется в пределах 500... 1100 Па. Применяются для тяжелых пылей: цементной, песчаной, древесной…

Рукавные фильтры (для улавлива ния сухих неслипающихся пылей) эффективность пылеулавливния - 90...99 %. Принцип очистки - задерживание частиц пыли на фильтрующих элементах (см. рис. 3). Основные рабочие эле менты - ма терчатые рукава, подвешиваемые к встря хивающему устройству. Применяются для тяжелых пылей: древесной, мучной, …

Гидравлическое сопротивление фильт ра в зависимости от степени запыления рукавов колеблется в пределах 1...2.5 кПа.

Фильтр-циклоны - комбинация циклона (отделение тяжелых частиц) и рукавного фильтра (отделение легких частиц). См. рис. 3.

Электрические фильтры - отделение пылевых частиц от воздуха производит ся под воздействием эле ктростатического поля высокой напряжен ности. В металлическом корпусе, стенки которых заземлены и являются осадительными электродами, размещены коронирующие электроды, соединенные с источником постоянного тока. Напря жение - 30...100 кВ.

Вокруг отрицательно заряженных электродов образуется электрическое поле. Проходящий через электрофильтр запыленный газ ионизируется и пылевые частицы приобретают отрицательные заряды. Последние начинают перемещаться к стенкам фильтра. Очистка осадительных электродов производится путем их остукивания или вибрации, а иногда путем смыва водой. аэрозоль фильтр скруббер

Эффективность пылеулавливания - 99,9 %. Низкое гидравлическое сопротивление 100...150 Па,

Размещено на Allbest.ru

...

Подобные документы

    Плавка цинка и сплавов. Промышленные выбросы пыли при плавке, предельно допустимые концентрации. Классификация систем очистки воздуха и их параметры. Сухие и мокрые пылеуловители. Электрофильтры, фильтры, туманоуловители. Метод абсорбции, хемосорбции.

    дипломная работа , добавлен 16.11.2013

    Характеристика методов очистки воздуха. "Сухие" механические пылеуловители. Аппараты "мокрого" пылеулавливания. Созревание и послеуборочное дозревание зерна. Сушка зерна в зерносушилке. Процесс помола зерна. Техническая характеристика Циклона ЦН-15У.

    курсовая работа , добавлен 28.09.2009

    Основные физико-химические свойства пыли. Оценка пылеулавливания батарейного циклона БЦ 250Р 64 64 после модернизации. Анализ метода обеспыливания газов для обеспечения эффективного улавливания с использованием физико-химических свойств коксовой пыли.

    дипломная работа , добавлен 09.11.2014

    Микробиологические методы обезвреживания промышленных органических жидких отходов. Подбор аппарата для очистки сточных вод от фенола и нефтепродуктов: выбор носителя культуры микроорганизмов и метода иммобилизации; технологический и механический расчеты.

    дипломная работа , добавлен 19.12.2010

    Основные методы очистки масличных семян от примесей. Технологические схемы, устройство и работа основного оборудования. Бурат для очистки хлопковых семян. Сепаратор с открытым воздушным циклом. Методы очистки воздуха от пыли и пылеуловительные устройства.

    контрольная работа , добавлен 07.02.2010

    Образование пыли при производстве цемента, экономическая необходимость ее регенерации. Получение цемента из обжиговой пыли и остатков товарного бетона. Экологический мониторинг атмосферного воздуха в зонах загрязнения отходами цементного производства.

    курсовая работа , добавлен 11.10.2010

    Организация машинного производства. Методы очистки технологических и вентиляционных выбросов от взвешенных частиц пыли или тумана. Расчет аппаратов очистки газов. Аэродинамический расчет газового тракта. Подбор дымососа и рассеивание холодного выброса.

    курсовая работа , добавлен 07.09.2012

    Анализ схем очистки пылей, образующихся на свинцовом производстве. Токсичность свинцовой пыли. Характеристика эксплуатационных показателей пылеулавливающего оборудования. Расчет размеров аппаратов, используемых для очистки выбросов от свинцовой пыли.

    курсовая работа , добавлен 19.04.2011

    Методы и технологические схемы очистки пылевоздушных выбросов от каменно-угольной пыли с применением пылеосадительных камер, инерционных и центробежных пылеуловителей, фильтровальных перегородок. Расчет материального баланса калорифера, циклона, фильтра.

    курсовая работа , добавлен 01.06.2014

    Знакомство с наиболее распространенными и эффективными методами очистки воздуха. Характеристика аппарата Циклон-ЦН15У: анализ сфер использования, рассмотрение функций. Особенности разработки и промышленного изготовления дешевых фильтровальных тканей.

Для сухой очистки газов наиболее употребительны циклоны раз­личных типов (рис. 2.1), в которых под действием центробежной силы частицы перемещаются к стенкам корпуса циклона и по ним попадают в бункер. Недостатком этого способа является низкая эффективность улавливания частиц размером менее 5...10мкм.

Коэффициент улав­ливания частиц размером 15...20 мкм составляет 98...99 % и выше, причем практически независимо от конструкции, для частиц 10 мкм - от 80 до 98 % в зависимости от модели аппарата, для частиц 5 мкм - от 50 до 90 %.

Производительность циклона увеличивается с ростом его диаметра. По конст­рукции различаются ци­линдрические (ЦН, рис. 2. 1а) и конические (СДК-ЦН и СК-ЦН, рис. 1.16) циклоны. Цилиндричес­кие циклоны, эффектив­ность которых падает с ростом угла, а входа в циклон, обладают высо­кой производительнос­тью, но несколько пони­женным КПД при улав­ливании мелких частиц; конические лучше улав­ливают мелкие частицы, однако характеризуются повышенными потерями давления.

Рис. 2.1. Схемы циклонов для сухой очистки газов

При больших объемах очищаемых газов применяют групповые или батарейные циклоны. Групповые циклоны име­ют общий подвод и отвод газа, разделенный на параллельные каналы по числу элементов. В батарейном циклоне элементы объединяются в один корпус и имеют общий подвод и отвод газа через направляю­щее устройство, закручивающее поток. Эффективность батарейных циклонов несколько ниже эффективности отдельных элементов.

К аппаратам центробежного действия относятся также ротаци­онные и вихревые пылеуловители. В радиальных пылеуловителях твердые частицы отделяются от газового потока совместным воз­действием гравитационных и инерционных сил, которые обусловле­ны поворотом газового потока. Эффективность очистки газа от час­тиц размером 25...30 мкм обычно составляет 65...85 %.

Простота конструкции и эффективность на уровне 80 % и более для частиц размером не менее 20 мкм отличает жалюзийные пылеотделители, в которых частицы пыли выделяются под действием инер­ционных сил.

В пылеосадительных или пылевых камерах пылъ выпадает под действием силы тяжести. Основными недостатками их являются зна­чительные размеры, сложность очистки и низкая эффективность, особенно для тонких фракций. Поэтому в настоящее время они ис­пользуются только для предварительной очистки, особенно при вы­сокой начальной концентрации пыли.

Высокую степень улавливания тончайшей пыли (до 99,9 % и бо­лее) обеспечивают рукавные (тканевые) фильтры, в которых очистка газов при фильтровании через пористую перегородку основана на осаждении пыли под действием нескольких сил: инерции, адгезии, броуновской диффузии, электростатических и других. В реальных фильтрах гравитационный механизм осаждения частиц не играет за­метной роли вследствие малых скоростей витания частиц по сравне­нию со скоростью фильтрации. Этот эффект становится заметным лишь при фильтрации аэрозоля с частицами диаметром 1 мкм со ско­ростью менее 0,05 м/с.

Инерционный эффект осаждения частиц практически отсутствует при движении частиц размером менее 1 мкм со скоростью менее 1 м/с. Броуновское движение вызывается столкновением твердых частиц размерами менее 0,5 мкм с молекулами газа. С уменьшением размера частиц усиливается влияние электрической силы по сравнению с си­лой инерции.

Важную роль в общей улавливающей способности играет адгезия пылевых частиц на волокна. Эффективность адгезии зависит от свойств фильтрующего материала, соотношения характерных разме­ров пор и частиц и уменьшается с ростом скорости частиц.

Кроме этих механизмов оседания частиц пыли весьма значимы такие процессы, как фильтрование частиц слоем осадка, образующе­гося на входной поверхности, а также процесс постепенного закупо­ривания пор слоем осадка и т.п.

По типу перегородки различают фильтры с зернистыми слоями (неподвижные свободнонасыпные материалы, псевдоожиженные слои); с гибкими пористыми перегородками (ткани, войлоки, губча­тая резина и др.); с полужесткими, пористыми перегородками (вяза­ные и тканые сетки, прессованные спирали и др.); с жесткими пори­стыми перегородками (пористая керамика, пористые металлы и др.).

По конструкции тканевые фильтры делят на рукавные и пакетные, по системе регенерации ткани - на механические (встряхивание) и пневматические (обратная, сопловая, пульсирующая продувки и т.п).

Одним из условий нормальной работы фильтров является поддер­жание температуры очищаемых газов в определенных пределах: с од­ной стороны, она не должна превышать максимально допустимую для материала фильтра, а с другой - на 15...30°С быть выше температуры точки росы. Фильтры используют для тонкой очистки воздуха с кон­центрацией примесей не более 50 мг/м 3 , если начальная концентра­ция примесей больше, то очистку ведут системой последовательно соединенных пылеуловителей и фильтров.

К недостаткам тканевых фильтров относятся их значительная ме­таллоемкость и большие размеры, так как, фильтрование газов проис­ходит при малых скоростях - 15. ..20 мм/с, для фильтров с импульсной продувкой - 50.. .75 мм/с. Это на 1.. .2 порядка меньше скоростей газа в рабочей зоне электрофильтра и на 2...3 порядка меньше, чем в цик­лоне.

Одним из наиболее совершенных видов сухой тонкой очистки га­зов от пыли является электрическая очистка. Принцип действия электрофильтров основан на прохождении газового потока через электрическое поле высокого напряжения, в котором частицы пыли заряжаются и осаждаются на электродах.

Процесс электростатического осаждения твердой частицы состо­ит из четырех основных стадий:

Ионизации газа,

Зарядки частицы пыли,

Перемещения частицы в электрическом поле

Осаждения ее на электроде.

Ионизация газа происходит за счет высокого напряжения, подводимого от источника электропитания к коронирующему элек­троду. В промышленных установках критическое напряжение, соот­ветствующее началу процесса, составляет 20...40 кВ. Этот процесс устойчив лишь в неоднородном электрическом поле, характерном для цилиндрического конденсатора.

В воздухе и дымовых газах подвижность отрицательных ионов выше, чем положительных, поэтому обычно используют электро­фильтры с короной отрицательной полярности. Конструкцию элек­трофильтров определяют состав и свойства очищаемых газов, кон­центрация и свойства взвешенных частиц, параметры газового пото­ка, требуемая эффективность очистки и т.д.

К преимуществам электрофильтров относятся: возможность по­лучения высокой степени очистки (до 99,9 %); небольшое аэродина­мическое сопротивление; незначительный расход электроэнергии (0,1 ...0,8 кВт-ч на 100 м 3 газа); возможность очистки газов при высо­кой температуре и с химически агрессивными компонентами; полная автоматизация работы. Недостатки: высокая стоимость, большие раз­меры (особенно по высоте), требование высококвалифицированного обслуживания, взрывоопасность при улавливании взрывчатых пылей, снижение эффективности улавливания пыли с малым электрическим сопротивлением.

Широко распространенные аппараты мокрой очистки газов ха­рактеризуются высокой эффективностью очистки от мелкодисперс­ных пылей (0,3... 1,0 мкм), а также возможностью очистки от пыли горячих и взрывоопасных газов. В зависимости от формы контакти­рования газовой и жидкой сред способы мокрой очистки можно ус­ловно сгруппировать на: улавливающие в объеме жидкости (рис. 1.2а), пленками жидкости (рис. 1.26), жидкостью, распыленной в объеме газа (рис. 1.2в). При этом важным фактором является смачиваемость частиц жидкостью.

Конструктивно мокрые пылеуловители разделяются на скрубберы, аппараты Вентури, форсуночные и центробежные скрубберы, аппара­ты ударно-инерционного типа, барботажно-пенные аппараты и др.

В барботерах и пенных аппаратах используется первый способ мокрой очистки. В скрубберах с насадкой, мокрых циклонах, ротоклонах и т.п. реализуется второй способ.

Наиболее употребительный третий способ очистки выполняется с помощью форсунок под давлением или за счет энергии самого по­тока газа.

Первый способ распыления применяется в полых скруббе­рах (рис. 1.За), второй - в турбулентных промывателях и скрубберах Вентури (рис. 1.36).

Последние широко используются и для очистки газов от туманов. Эффективность скрубберов изменяется в широких пределах. Так, эффективность улавливания частиц мелкой фракции (З...5 мкм) изменяется от менее 10 % в полых скрубберах до более 90 % в скрубберах Вентури.

Аппараты мокрой очистки обычно просты в изготовлении, надеж­ны в эксплуатации, достаточно эффективны, позволяют одновременно утилизировать тепло нагретых газов и очищать от многих газооб­разных, вредных компонентов. К недостаткам мокрой очистки отно­сятся повышенные энергозатраты, брызгоунос и необходимость орга­низации шламового хозяйства.

Большое влияние на выбор способов и средств пылеулавливания и пылеподавления оказывают свойства пыли, такие как плотность частиц, их дисперсность; адгезионность, сыпучесть, смачиваемость, абразивность и гигроскопичность пыли, а также растворимость час­тиц, их электрические и электромагнитные свойства, способность к самовозгоранию и образованию взрывоопасных смесей с воздухом.

Выбор способа пылеулавливания и пылеподавления определяет­ся и видом технологического процесса.

При подготовительных работах на карьерах в процессе механи­ческого бурения наиболее распространены пылеподавление воздуш­но-водяной и воздушно-эмульсионными смесями, а также сухое пылеулавливание.

При взрывных работах пылегазовыделения снижаются путем осу­ществления технологических и инженерно-технических мероприятий. К первым относят такие способы управления взрывом, как взрывание высоких уступов; взрывание в зажатой среде; рассредоточение заряда.

Из инженерно-технических мероприятий следует выделить:

Орошение участка взрыва, прилегающих зон и зоны выпадения пыли;

Применение водяной забойки;

Предварительное увлажнение массива;

Применение ВВ с положительным кислородным балансом;

Добавка в забоечный материал нейтрализаторов;

Интенсификация рассеивания пылегазового облака;

Предотвращение интенсивного взметывания пыли, оседающей из пылегазового облака;

Подавление вредных примесей в пылегазовом облаке и многие другие.

При выемке и погрузке горных пород пылеобразование и пылевыделение снижаются предварительным увлажнением массива; увлаж­нением разрыхленной горной массы; пылеулавливанием.

Способы и средства борьбы с запыленностью и загазованностью атмосферы при транспортировании во многом определяются видом транспорта. При использовании автомобильного транспорта основны­ми источниками пылевыделения являются автодороги, а загазованность атмосферы связана с выделением вредных примесей с выхлопными газами. При эксплуатации железнодорожного транспорта, пыление в ос­новном связано со сдуванием мелких частиц при перевозке горной мас­сы в открытых транспортных сосудах - думпкарах, полувагонах.

При конвейерном транспорте образование пыли обусловлено сду­ванием ее при движении и перемещении горной массы с одного конвей­ера на другой. При комбинированном транспорте причины запыленно­сти и загазованности связаны с каждым видом транспорта, входящем в комбинацию и, кроме того, с большим количеством выделяемой пыли в пунктах перегрузки с одного вида транспорта на другой.

Для предупреждения пылевыделения на автодорогах применяют их орошение водой или растворами гигроскопичных солей, а также обработку эмульсиям и с различными связывающими веществам и.

На железнодорожном транспорте поверхность транспортируемой горной массы закрепляют пылесвязуюшими материалами, укрывают пленкой либо увлажняют водой. При конвейерном транспорте исполъзуют различные укрытия конвейеров, а конвейерную ленту очи­щают от налипшего материала. Пункты перегрузки оборудуют укры­тиями с аспирационными системами.

Для отвалов, откосов карьеров, шламохранилищ характерны боль­шие объемы пылевыделения.

Для снижения их используют:

Орошение водой с добавками химически активных веществ, обес­печивающих закрепление поверхности;

Закрепление битумной эмульсией;

Закрепление пылящей поверхности латексами;

Озеленение нерабочих площадей;

Гидропосев.

Различают технологические; механические; физико-химические; биологические ; рекультивационные способы борьбы с пылением гид­роотвалов и хвостохранилищ.

Технологические способы предусматривают изменения способов складирования; изменение состава и состояния продуктов складиро­вания; безотходную или малоотходную технологию обогащения; ути­лизацию отходов.

Из механических способов распространены создание загражде­ний, предотвращающих распространение пыли, и сплошное покры­тие пылящей поверхности материалом.

Среди физико-химических следует отметить гидрообеспыливание; стабилизацию пылящей поверхности полимерами, органическими и неорганическими веществами; изменение физических свойств пыля­щей поверхности (электризация, намагничивание и пр.).

Биологические способы обеспечивают снижение пылевыделения за счет создания защитного слоя из низших растений или выращива­ния высших растений.

При выполнении всех технологических процессов на открытых горных разработках кроме пыли в той или иной мере выделяются вред­ные газы, особенно при производстве массовых взрывов, транспорти­ровании горной массы автотранспортом, при обжиге и обогащении полезных ископаемых, эксплуатации котельных установок и т.д.

Методы очистки пылегазовых выбросов


Введение

Длительное время локальные загрязнения атмосферы сравнительно быстро разбавлялись массами чистого воздуха. Пыль, дым, газы рассеивались воздушными потоками и выпадали на землю с дождем и снегом, нейтрализовались, вступая в реакции с природными соединениями. Сейчас объемы и скорость выбросов превосходят возможности природы к их разбавлению и нейтрализации. Поэтому необходимы специальные меры для устранения опасного загрязнения атмосферы. Основные усилия сейчас направлены на предупреждение выбросов загрязняющих веществ в атмосферу. На действующих и новых предприятиях устанавливают пылеулавливающее и газоочистное оборудование. В настоящее время продолжается поиск более совершенных способов их очистки.Классификация методов и аппаратов для обезвреживания газовых выбросов от различных примесей является приближенной. Она не охватывает всех существующих методов и тем более аппаратов для газоочистки.

Рассмотрим, существующие методы очистки.

1. Методы очистки от пыли

Для обезвреживания аэрозолей (пылей и туманов) используют сухие, мокрые и электрические методы. Кроме того, аппараты отличаются друг от друга как по конструкции, так и по принципу осаждения взвешенных частиц. В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. В мокрых пылеуловителях осуществляется контакт запыленных газов с жидкостью. При этом осаждение происходит на капли, на поверхность газовых пузырей или на пленку жидкости. В электрофильтрах отделение заряженных частиц аэрозоля происходит на осадительных электродах.

Выбор метода и аппарата для улавливания аэрозолей в первую очередь зависит от их дисперсного состава табл. 1

Таблица 1. Зависимость аппарата для улавливания от размера частиц

К сухим механическим пылеуловителям относятся аппараты, в которых использованы различные механизмы осаждения: гравитационный, инерционный и центробежный.

Инерционные пылеуловители . При резком изменении направления движения газового потока частицы пыли под воздействием инерционной силы будут стремиться двигаться в прежнем направлении и после поворота потока газов выпадают в бункер. Эффективность этих аппаратов небольшая. (рис. 1)

Жалюзийные аппараты . Эти аппараты имеют жалюзийную решетку, состоящую из рядов пластин или колец. Очищаемый газ, проходя через решетку, делает резкие повороты. Пылевые частицы вследствие инерции стремятся сохранить первоначальное направление, что приводит к отделению крупных частиц из газового потока, тому же способствуют их удары о наклонные плоскости решетки, от которых они отражаются и отскакивают в сторону от щелей между лопастями жалюзи В результате газы делятся на два потока. Пыль в основном содержится в потоке, который отсасывают и направляют в циклон, где его очищают от пыли и вновь сливают с основной частью потока, прошедшего через решетку. Скорость газа перед жалюзийной решеткой должна быть достаточно высокой, чтобы достигнуть эффекта инерционного отделения пыли. (рис. 2)

Обычно жалюзийные пылеуловители применяют для улавливания пыли с размером частиц >20 мкм.

Эффективность улавливания частиц зависит от эффективности решетки и эффективности циклона, а также от доли отсасываемого в нем газа.

Циклоны . Циклонные аппараты наиболее распространены в промышленности.

Рис. 1 Инерционные пылеуловители: а – с перегородкой; б – с плавным поворотом газового потока; в - с расширяющимся конусом.


Рис. 2 Жалюзийный пылеуловитель (1 – корпус; 2 – решетка)

По способу подвода газов в аппарат их подразделяют на циклоны со спиральными, тангенциальным и винтообразным, а также осевым подводом. (рис. 3) Циклоны с осевым подводом газов работают как с возвратом газов в верхнюю часть аппарата, так и без него.

Газ вращается внутри циклона, двигаясь сверху вниз, а затем движется вверх. Частицы пыли отбрасываются центробежной силой к стенке. Обычно в циклонах центробежное ускорение в несколько сот, а то и тысячу раз больше ускорения силы тяжести, поэтому даже весьма маленькие частицы пыли не в состоянии следовать за газом, а под влиянием центробежной силы движутся к стенке. (рис. 4)

В промышленности циклоны подразделяются на высокоэффективные и высокопроизводительные.

При больших расходах очищаемых газов применяют групповую компоновку аппаратов. Это позволяет не увеличивать диаметр циклона, что положительно сказывается на эффективности очистки. Запыленный газ входит через общий коллектор, а затем распределяется между циклонами.

Батарейные циклоны – объединение большого числа малых циклонов в группу. Снижение диаметра циклонного элемента преследует цель увеличения эффективности очистки.

Вихревые пылеуловители. Отличием вихревых пылеуловителей от циклонов является наличие вспомогательного закручивающего газового потока.

В аппарате соплового типа запыленный газовый поток закручивается лопаточным завихрителем и движется вверх, подвергаясь при этом воздействию трех струй вторичного газа, вытекающих из тангенциально расположенных сопел. Под действием центробежных сил частицы отбрасываются к периферии, а оттуда в возбуждаемый струями спиральный поток вторичного газа, направляющий их вниз, в кольцевое межтрубное пространство. Вторичный газ в ходе спирального обтекания потока очищаемого газа постепенно полностью проникает в него. Кольцевое пространство вокруг входного патрубка оснащено подпорной шайбой, обеспечивающей безвозвратный спуск пыли в бункер. Вихревой пылеуловитель лопаточного типа отличается тем, что вторичный газ отбирается с периферии очищенного газа и подается кольцевым направляющим аппаратом с наклонными лопатками. (рис. 5)


Рис. 3 Основные виды циклонов (по подводу газов): а – спиральный; б – тангенциальный; в-винтообразный; г, д – осевые


Рис. 4. Циклон: 1 – входной патрубок; 2 выхлопная труба; 3 цилиндрическая камера; 4 коническая камера; 5 – пылеосадительная камера

В качестве вторичного газа в вихревых пылеуловителях может быть использован свежий атмосферный воздух, часть очищенного газа или запыленные газы. Наиболее выгодным в экономическом отношении является использование в качестве вторичного газа запыленных газов.

Как и у циклонов, эффективность вихревых аппаратов с увеличением диаметра падает. Могут быть батарейные установки, состоящие из отдельных мультиэлементов диаметром 40 мм.

Динамические пылеуловители . Очистка газов от пыли осуществляется за счет центробежных сил и сил Кориолиса, возникающих при вращении рабочего колеса тягодутьевого устройства.

Наибольшее распространение получил дымосос-пылеуловитель. Он предназначен для улавливания частиц пыли размером >15 мкм. За счет разности давлений, создаваемых рабочим колесом, запыленный поток поступает в «улитку» и приобретает криволинейное движение. Частицы пыли отбрасываются к периферии под действием центробежных сил и вместе с 8–10% газа отводятся в циклон, соединенный с улиткой. Очищенный газовый поток из циклона возвращается в центральную часть улитки. Очищенные газы через направляющий аппарат поступают в рабочее колесо дымососа-пылеуловителя, а затем через кожух выбросов вдымовую трубу.

Фильтры. В основе работы всех фильтров лежит процесс фильтрации газа через перегородку, в ходе которого твердые частицы задерживаются, а газ полностью проходит сквозь нее.

В зависимости от назначения и величины входной и выходной концентрации фильтры условно разделяют на три класса: фильтры тонкой очистки, воздушные фильтры и промышленные фильтры.

Рукавные фильтры представляют собой металлический шкаф, разделенный вертикальными перегородками на секции, в каждой из которых размещена группа фильтрующих рукавов. Верхние концы рукавов заглушены и подвешены к раме, соединенной с встряхивающим механизмом. Внизу имеется бункер для пыли со шнеком для ее выгрузки. Встряхивание рукавов в каждой из секций производится поочередно. (рис 6)

Волокнистые фильтры. Фильтрующий элемент этих фильтров состоит из одного или нескольких слоев, в которых однородно распределены волокна. Это фильтры объемного действия, так как они рассчитаны на улавливание и накапливание частиц преимущественно по всей глубине слоя. Сплошной слой пыли образуется только на поверхности наиболее плотных материалов. Такие фильтры используют при концентрации дисперсной твердой фазы 0,5–5 мг/м 3 и только некоторые грубоволокнистые фильтры применяют при концентрации 5–50 мг/м 3 . При таких концентрациях основная доля частиц имеет размеры менее 5–10 мкм.

Различают следующие виды промышленных волокнистых фильтров:

– сухие – тонковолокнистые, электростатические, глубокие, фильтры предварительной очистки (предфильтры);

– мокрые – сеточные, самоочищающиеся, с периодическим или непрерывным орошением.

Процесс фильтрации в волокнистых фильтрах состоит из двух стадий. На первой стадии уловленные частицы практически не изменяют структуры фильтра во времени, на второй стадии процесса в фильтре происходят непрерывные структурные изменения вследствие накопления уловленных частиц в значительных количествах.

Чистка компьютера от пыли – важная операции, которую должен проводить каждый пользователь компьютера. Многие пользователи ни разу ни проводили чистку компьютера, а некоторые даже никогда не открывали корпус компьютера и не представляют, в каком состоянии сейчас находится системный блок.

Зачем чистить компьютер от пыли

Пыль, которая накапливается внутри системного блока, вызывает перегрев различных компонентов системного блока. Из-за увеличения температуры компонентов системного блока компьютер начинает сильно шуметь, повышается износ компонентов и, в конце концов, это может привести к выходу из строя одного или нескольких компонентов системного блока.

Согласитесь, не самая лучшая перспектива. Но этого можно избежать, потратив 30 минут раз полгода, что бы произвести чистку компьютера от пыли.

Как очистить компьютер от пыли

Для очистки компьютера от пыли можно использовать один из двух основных принципов: выдувать пыль из системного блока или засасывать пыль, кроме того можно комбинировать два этих метода.

Выдувать пыль можно с помощью баллончика со сжатым воздухом, пылесоса (который может выдувать воздух), фена (но не горячим воздухом) и любым устройством, которое способно выделять струю воздуха под напором.

Засасывать пыль мы будем с помощью пылесоса. Кроме того Вам понадобится щётка или кисточка (которой мы будем убирать пыль из труднодоступных мест и засасывать ее пылесосом).

Подготовительный этап

Перед тем как приступить к чистке компьютера от пыли, нужно определиться с инструментами для чистки.

Для чистки компьютера нам понадобится:

  • Пылесос
  • Кисточка с длинным волосом
  • Зубная щетка
  • Баллончик со сжатым воздухом
  • Отвертка

Конечно, не все из этих инструментов понадобятся Вам при работе (например, если Вы собираетесь высасывать пыль пылесосом, то фен или баллончик со сжатым воздухом Вы можете не использовать). Я привел лишь основные инструменты, которые Вы можете использовать при чистке компьютера от пыли.

Меры предосторожности

Во время чистки системного блока от пыли соблюдайте следующие правила:

  • Обязательно отключите системный блок от розетки;
  • Не прикасайтесь к компонентам системного блока пылесосом. Платы можно трогать только кисточкой;
  • Не залезайте в системный блок и мокрыми или липкими руками;
  • Не пытайтесь сдуть пыль воздухом изо рта. Сдувая пыль таким образом, она попадет в глаза и дыхательные пути;
  • Если выдуваете пыль с помощью фена, то воздух должен быть холодный, но ни в коем случае не горячий.

Шаг 1. Открыть системный блок

Отключаем системный блок от всех периферийных устройств, сети, питания и т.д. Отключив все устройства, Мы можем перенести системный блок куда захотим. Для удобства работы я посоветую Вам поставить системный блок на стол или любую ровную поверхность, находящуюся Выше полу. Так будет удобнее работать, чем ползать по полу.

Теперь нужно снять боковую стенку(крышку) с системного блока. Нам нужно снять боковую стенку, которая находится с левой стороны системного блока, если смотреть на него спереди (там, где находится кнопка включения и привод). Если Вы собираетесь выдувать пыль, то лучше снять обе боковые стенки (будет больше отверстий, через которые можно выдуть пыль из системного блока).

Что бы снять крышку, нужно сначала открутить болты, которые крепят боковые стенки с задней стороны. На новых моделях корпуса системного блока боковые стенки могут крепиться не на болты сзади, а на специальные механизмы (защелки), которые могут располагаться на самих стенках.

Открыв крошку, осматриваем системный блок и оцениваем запыленность системного блока.

Шаг 2. Общая чистка

Когда мы окрыли корпус и оценили фронт работ нужно приступать к очистке. Нужно как можно тщательнее удалить пыль из корпуса и со всех устройств. Пройдитесь по всем местам: дно и бока корпуса, все платы, вентиляторы, не забудьте про блок питания и вентиляторы на корпусе.

Если Вы выдуваете пыль из корпуса, то нужно убрать системный блок из комнаты (например, балкон или вынести из квартиры в коридор). Когда Вы выдуваете пыль, она будет лететь во все стороны и оседать на вашей мебели и попадать в дыхательные пути. По – этому нужно делать это за пределами квартиры. Выдувайте пыль со всех углов и щелей, плат, устройств, вентиляторов.

Если Вы засасываете пыль, то снимите с пылесоса трубку и начинайте собирать пылесосом пыль со всех устройств, вентиляторов и углов. Возьмите кисточку с длинным волосом, что бы стряхивать пыль из труднодоступных мест или лопастей вентиляторов и засасывайте пыль пылесосом.

Продвинутые пользователи так же могут снять переднюю крышку корпуса и прочистить ее от пыли. Во многих системных блоках с передней стороны корпуса так же устанавливается вентилятор, которые со временем засоряется. Если Вы не уверены, что сможете снять и поставить обратно переднюю крышку, то лучше этого не делать.

Шаг 3. Чистка отдельных компотов

Теперь нужно отсоединить некоторые компоненты от материнской платы и корпуса. Нужно отсоединить видеокарту, модули оперативной памяти и прочие устройства (например, тв-тюнер, звуковая карта) которые подключены к материнской плате. Отсоединив устройства, мы сможем тщательнее очистить их от пыли, чем при общей очистке. Кроме самих устройств нужно убрать пыль из разъемов, куда они крепились.

Не обязательно доставать из корпуса привод и жесткие диски. В большинстве случаев пыль с них можно удалить, не вынимая их из корпуса (пылесос, кисточка). Но всё-таки оцените ситуацию, в некоторых корпусах, привод или жесткий диск могут устанавливается не очень удобно и очистить их от пыли крайне тяжело. В таком случае придется отсоединять их от корпуса для чистки.

Обратите внимание, что устройства нужно отсоединять только после общей очистки корпуса (шаг 2), иначе пыль может забиться в разъемы, куда устанавливаются отсоединенные Вами устройства (видеокарта, оперативная память и т.д.).

Шаг 4. Завершение чистки

Очистив все компоненты и устройства, устанавливаем их на место, закрываем корпус и проверяем работоспособность компьютера.

Заключение

Чистка компьютера от пыли помогает предотвратить выход из строя компонентов компьютера и снизить шум его работы. Проводите это операцию, не реже чем раз в полгода, а лучше периодически открывайте крышку своего системного блока и смотрите его состояние.